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Abstract

Background: In diffuse large B-cell lymphoma (DLBCL), chromo-
somal aberrations are known to increase with advancing age. Our 
study aims to determine if there are other genetic aberrations associ-
ated with DLBCL based on age.

Methods: Using the Mitelman Database of Genetic Aberrations, we 
were able to find 749 cases of DLBCL with genomic aberrations with 
a median age of 62 years. Patients with DLBCL chromosomal aber-
ration analysis results were divided into four groups based on age (0 
- 30, 31 - 50, 51 - 70, > 71 years) and examined by chi-square analysis 
and Mantel-Cox for survival analysis.

Results: Ten aberrations were found to be significant with a particular 
age range: t(2;3), trisomy 19p13, trisomy 18q21, trisomy 3, trisomy 7, 
trisomy 14, trisomy 16, trisomy 18, monosomy 3 and monosomy 11, 
and survival ranged from 7 to 25 months.

Conclusion: This suggests that patients with DLBCL are likely to ac-
cumulate specific translocations depending on their age at the onset 
of DLBCL.

Keywords: Cancer and aging; Genetic aberrations; Diffuse large B-
cell Lymphoma

Introduction

Chromosomal instability and rearrangements may occur at 
any age, but many aberrations are known to confer a selective 
advantage in diffuse large B-cell lymphoma (DLBCL). Aber-
rations which amplify the effect of proto-oncogenes (t(3;14), 
t(8;14), t(14;18), t(15;17), trisomy 3q27) and those which re-
duce or prevent the effects of tumor suppressor genes (dele-
tions of chromosome 17, 16p11) have profound effects on cel-
lular behavior and are the inciting events that lead to cancer. 
While many chromosome aberrations have a straight forward 
effect (c-MYC amplification in t(8;14)), others have a role that 
has yet to be determined clearly such as monosomy 19p13 or 
a seemingly paradoxical role seen in the deletion or addition 
of chromosome 3. While in some cases aberrations may be 
benign, it is imperative that we understand more about how 
these aberrations at the chromosomal, genetic and epigenetic 
level affect survival and susceptibility in the era of personal-
ized medicine.

DLBCL is the most common subtype of non-Hodgkin 
lymphoma in adults and includes a heterogeneous group of 
subtypes. While DLBCL may arise de novo, it may also re-
sult from the transformation of more indolent lymphomas such 
as chronic lymphocytic leukemia, lymphocyte predominant 
Hodgkin lymphoma, marginal zone lymphoma and follicular 
lymphoma [1, 2]. The characteristic marking the change from 
any of these more indolent lymphomas into DLBCL is the loss 
of histological architecture of the former to the diffuse unregu-
lated architecture of DLBCL along with a clonal relationship. 
DLBCL tends to develop later in life, with a median age of 
onset around 70, though younger patients tend to have better 
outcomes, with age ≥ 70 associated with decreased overall sur-
vival [3]. However, 2-year progression-free survival (PFS) has 
improved dramatically in the post rituximab era (78%), and 
may improve further with the use of highly specified thera-
pies [3, 4]. As molecular diagnosis advances, it is essential to 
learn more about how the genetic landscape of DLBCL can 
influence potential therapeutic options, and their presentation 
according to age.

Younger patients with DLBCL have a better overall 
prognosis, which is likely due to a variety of factors includ-
ing fewer comorbidities, decreased overall genetic damage 
and aberrations with a superior overall prognosis [5, 6]. This 
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is similar to related diseases such as acute myeloid leukemia 
(AML) [7] and acute lymphoblastic leukemia (ALL), with 
studies suggesting that socioeconomic factors do not as much 
of a role as the intrinsic makeup of the disease [8]. In such a 
case, individual mutations and aberrations may be a marker for 
a particular type of malignancy. For example, anaplastic lym-
phoma kinase (ALK)-positive anaplastic large-cell lymphoma 
(ALCL) generally affects a younger population with a median 
age of 17 years and the expression of the ALK fusion protein 
is a positive prognostic indicator [9]. ALK positivity is general 
associated with a younger population, while others are associ-
ated with tumor suppressor genes like VHL on chromosome 3 
or ATM on chromosome 11 [10, 11].

Certain genetic aberrations in DLBCL have become es-
sential to diagnosis and treatment of DLBCL. Double hit and 
triple hit lymphomas involving translocations or aberrations of 
c-MYC, BCL2 and BCL6 are known to carry a poor prognosis 
[12]. c-MYC is located on chromosome 8q24 seen in 3-16% of 
DLBCL, with double hit lymphomas occurring 0-12% of the 
time [13]. A study conducted by Savage et al [12] demonstrated 
a poor prognosis in DLBCL with t(8;14) MYC rearrangements, 
with an average age of 69 years. Furthermore, the copy num-
ber of MYC in these cases was also found to be independently 
associated with a poor prognosis [14]. DLBCL with t(14;18) 
translocations involving BCL2 is found almost exclusively in 
patients older than 18 years of age [15], and advancing age in 
general is associated with the development of micronuclei, ane-
uploidy and increasing chromosomal aberration [16]. In a large-
scale chromosomal study of 60 cases of myeloid malignancies 
with t(2;3), it was found that patients commonly present with 
concomitant abnormalities that were clinically relevant with 
poorer prognosis, predominantly monosomy 7, deletion of 5q 
and t(9;22) [17]. Very old age (> 81 years) is an independent 
risk factor for poor overall survival in DLBCL.

Our study aims to determine if there are other specific ge-
netic aberrations associated with certain age groups. Develop-
ment of specific aberrations and their relevance to clinical out-
comes have been discussed at length; however, there is sparse 
information on the development of aberrations as they relate to 
young, middle aged or elderly patients. The age of diagnosis 
may play an important role in offering both prognostic value 
and molecular characteristics which help to identify patients 
who are at risk.

Patients and Methods

Data acquisition and search terms

The National Cancer Institute’s Mitelman Database of Chro-
mosome Aberrations and Gene Fusions was used to identify 
patients with DLBCL. On the date of inquiry (March 1, 2017), 
this represented 1,006 Pts with DLBCL. Publications before 
1990 were excluded for data consistency, leaving a total of 749 
patients. One hundred twenty-eight different parameters of in-
quiry (Supplementary Table 1) were used to identify specific 
chromosomal aberrations and these aberrations were divided 
into four age groups (0 - 30, 31 - 50, 51 - 70, > 71 years). 

Significance was determined by chi-square analysis, where P < 
0.05 was determined to be significant. Aberrations concluded 
to be non-significant due low incidence were excluded from 
the survival analysis but are mentioned in the text. Calcula-
tions of chromosome complexity utilized each comma as a 
delimiter of the aberration. Chromosome number was deter-
mined by either the number provided or the average number 
of those provided.

Survival analysis

Survival analysis was conducted based on available data from 
publications. Survival was calculated from the date of diagno-
sis to the date of death or follow-up. Data that did mention date 
of death or follow-up was omitted. Mantel-Cox log-rank and 
Gehan-Breslow-Wilcoxon tests were used for survival analysis 
and significance between curves. All P values were two-sided 
and an alpha value of less than 0.05 was used for significance. 
Statistical analysis was conducted using Graphpad Prism 7.

Results

From the overall query of 128 different terms, a total of 10 
aberrations were identified which showed a significant asso-
ciation with a particular age range (9.4%). The translocation 
t(2;3) was associated with a younger age range. Two were 
chromosomal portions (19p13 and 18q21) which were both 
associated with older age ranges. The vast majority of signifi-
cant data points involved whole chromosome duplications (3, 
7, 14, 16 and 18) and deletions (3, 11) (Table 1). Altogether, 
this demonstrates that while the mechanism of aberrations may 
vary, certain aberrations are more likely to occur in specific 
age groups.

Younger patients were also more likely to have a trans-
location associated with their DLBCL. Translocations of 
chromosome 2 were associated with younger patients as 60% 
of the patients with t(2;3) translocation were under 50 (Fig. 
1). The t(1;12) translocation showed a trend toward younger 
patients but lacked a large enough sample size to be con-
sidered significant. There were examples of increasing inci-
dence with age as well. Trisomy 19p13 and trisomy 18 were 
conspicuous examples, with increasing incidence in older 
patients. In addition, there were two aberrations (t(7;16) and 
trisomy 2p23), which showed high proportions of late middle 
age and elderly patients but lacked an adequate sample size 
for significance.

Our results demonstrated a large degree of variabil-
ity within our DLBCL population, with a mean chromosome 
number of 59.8, ranging from 36 to 109.5. The total number of 
aberrations was also variant, with a mean of 8.6, ranging from 
1 to 51 per case. Results for mean chromosomal number were 
also varied from 46.5 (trisomy 18q21) to 73.5 (monosomy 11). 
The average number of aberrations within any sample was also 
variant. The mean number of aberrations was 8.6 within the 
entire sample population. The aberrations which we found to 
be significant tended to have increased chromosomal instabil-
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ity compared to the sample population as a whole and ranged 
from 8.2 (trisomy 3) to 18.8 (monosomy 11).

Our study results were from a range of studies published 
between 1990 and 2016 and the median overall date of publi-
cation was 2000. Survival was determined from these publica-
tions when provided (Fig. 2). The median overall survival was 
14 months for the entire population, and differences in survival 
among significant aberrations were not significant (log-rank 
test, P = 0.7512, Gahen-Breslow-Wilcoxon Test, P = 0.8759). 
Aberrations with the shortest median survival were trisomy 
19p13 (7 months) and trisomy 16 (9 months). The longest sur-
vival occurred in trisomy 14 (25 months), monosomy 11 (21 
months), trisomy 3 and trisomy 7 (19 months).

Discussion

Our study shows that age is a factor when considering the 
chromosomal aberrations associated with DLBCL. Ten sig-
nificant age-related aberrations were found in DLBCL, some 
of which have been previously demonstrated, while others are 
novel (19p13, 18q21). The t(2;5) translocation, which trans-
poses nucleophosmin to the ALK gene, has rarely been asso-
ciated with younger patients in the ALK+ variant of DLBCL 
[18, 19]. However, a comprehensive systematic review of 
108 ALK+ DLBCL only found four patients with NPM-ALK 
t(2,5). NPM-ALK is the most common chimeric protein in 
ALK+ ALCL, but it is rare in ALK+ DLBCL, which the ma-
jority show the t(2;17) CLTC-ALK fusion gene [19, 20]. 
Our t(2;5) translocation results likely reflect misdiagnosis of 
ALK+ ALCL and therefore, were not included as significant 
findings. Similarly, we found many instances of the t(8;14) 
translocation which involves many iterations of the c-MYC 
gene with the immunoglobulin heavy chain locus [20]. Our 
analysis demonstrated a proportionately significant increase 
in patients under the age of 30 years, and with a decrease in 
incidence in patients over 71 years, as well as a median sur-
vival of 8 months for this population, but again many of these 
are likely misdiagnosed or miscoded Burkitt lymphoma given 
the population age.

A population we found to be associated with younger 
patients was the t(2;3) translocation which often combines 
the immunoglobulin κ light chain gene and the BCL6 protein 
(median age: 54.5 years). In our study, there were also sev-
eral cases of the EVI fusion gene fused with ETV6, which is 
more common in cases of myeloid malignancies [21]. While 
there have been many case studies of the t(2;3) translocation 
in DLBCL, few have looked at age as an isolated factor. BCL6 
aberrations of some kind are known to occur in roughly 20% of 
DLBCL [22], but the incidence of the t(2;3) translocations re-
mains fairly rare (2.9%) [23]. Survival differences, especially 
between the pre-and post-rituximab era, are substantial. The 
median survival of our t(2;3) translocation population was 10 
months, which we believe to be a novel estimate in DLBCL 
(Fig. 2).

The 19p13 locus has been found to be associated with 
multiple cancer types [24]. In all cases, including DLBCL, 
the exact gene or genes which cause it to be a frequent target Ta
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are unknown. Several targets have been suggested including 
TCF3 [25], TNFSF7, TNFSF9 [26], as well as several mir-
coRNAs located in the region [27]. The most direct compari-
son conducted by Kim et al [28], found 19p13 to be a poor 
prognostic indicator but did not elaborate on the age of the 
population (16). They found that 19p13 aberrations in general 
were associated with a low overall survival, with a 95% con-
fidence interval of between 1.50 and 4.76 months. Our study, 
with an identical number of patients, found a gain of 19p13 to 
increase with age, with the majority of patients over 71 years 
and zero patients under 30 years. We also found it to be a poor 
prognostic indicator with a mean overall survival of 7 months, 
which is likely associated with increasing age of the patients 
involved.

Chromosome 18q21 includes the paracaspase MALT-1, 
which in its activated form leads to the activation of BCL-10 
and NF-κB. This in turn leads to an upregulation of BCL-2 
in the absence of further genetic modification, including the 
t(14;18) translocation [29, 30]. In previous studies, gain of 
18q21 functioned as an independent negative predictive factor 
[30], while in other studies, it was found to be non-significant 
in contribution [28, 31]. A separate study showed that relapses 
were increased in patients who gained 18q21 [32]. Our study 
shows that the majority of patients were between the ages of 
51 and 70 years (73.3%) and median survival was actually 
improved compared to our total population, though not sig-
nificantly (17 months). MALT1 along with its signaling part-
ners has recently become a target of small molecular inhibi-
tors which are showing potent activity in preclinical screening 
[33].

Chromosome instability is well known in oncology, 
caused by increasing cellular dysregulation and natural selec-
tion of new clones [32]. Whole chromosome aberrations are 
a well-known but poorly defined mechanism to amplify spe-
cific genes such as BCL2 by increasing the number of chro-
mosome 18 but determining with certainty which genes are 
involved in highly speculative. Trisomy 3 [34], 14 [35], 16 
[36] and 18 [37] are often found in hematological malignan-
cies, and their incidence has been associated primarily with 
the proto-oncogenes found on those chromosomes. We found 
both a gain and loss of chromosome 3 to be significant, though 
monosomy 3 was associated with an increase in patients under 
30 years, while trisomy 3 occurred primarily in patients over 
50 years. Survival was only lessened in the case of trisomy 
16 (9 months), while all others were above the median of the 
population. Trisomy 14, monosomy 3 and monosomy 11 were 
all enriched in patients under of the age of 30 years. Chro-
mosomes 3 and 11 are the locations of the VHL and ATM 
tumor suppressor genes, which could shed some light on their 
respective deletions. ATM is produced in response to DNA 
damage, which leads to downstream activation of DNA repair 
enzymes and p53. It is known that mutations and variants of 
ATM may lead to malignancy, so by selecting for clones with 
a deletion of chromosome 11, it is possible for this to be a 
reason for increase in genetic aberrations seen in that popula-
tion [38].

Though we found several novel associations, our study is 
not without limitations. Firstly, our observations were record-
ed retrospectively from many different sources. The numbers 
of patients in some groups both for survival and chromosomal 

Figure 1. Age-based proportions of significant aberrations. Ten significant data points were obtained. The t(2;3) translocation 
showed a significant increase in the proportion of patients less than 30. Similar findings were observed in trisomy 14, monosomy 
3 and monosomy 11. Older patients (> 71 years) showed increased incidence of the additions of 19p13, 18q21, trisomy 3, trisomy 
16 and trisomy 18.
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analyses had a low overall number of patients. For three groups 
of chromosomal analysis, 16 or fewer patients were identified, 
and fewer were identified with corresponding survival infor-
mation (t2;3 translocation, trisomy 19p13 and trisomy 18q21). 
In these cases, further study is needed to understand the utility 
of these findings.

In addition, these sources have different prerogatives for 
their data, so many cases did not have survival information 
(Supplementary Table 1). In those that did, we only recorded 
the survival information where the survival could be deter-
mined from the date of diagnosis to the date of death. Our ob-
servations also only considered the single aberrations that oc-
curred and not the complete karyotype of each patient, which 
obviously complicates drawing conclusions regarding prog-
nosis. Finally, while limiting the starting year of our study to 
1990, it bridges the pre- and post-rituximab era and some data 
points may be biased more toward one treatment paradigm. 
Our previous data [39] had shown some significant points 
which, by restricting the data to 1990, were no longer signifi-
cant. This is likely due to differences in diagnostic and clinical 
assessment before 1990, and many similar issues likely apply 
to our current data in a less profound way while preserving a 
fairly large patient dataset. Despite these limitations, we be-

lieve that our data provides novel insight into the age associa-
tions of particular aberrations in DLBCL.

The association of chromosomal aberrations with DLBCL 
has been long established; however, therapies are now being 
employed to target and stratify risk of specific therapies [40]. 
Moving forward, it is essential to understand how these ab-
normalities contribute to diagnostic and prognostic features 
both in DLBCL and in cancer in general. Further investiga-
tion is necessary to look for the associated genetic changes at 
a smaller scale as well as the epigenetic changes that may be 
influencing these aberrations.
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Figure 2. Kaplan-Meier curve of age-based aberrations. The 10 significant aberrations did not show any significant differences 
from one another (log-rank test, P = 0.7512, Gahen-Breslow-Wilcoxon test, P = 0.8759). The poorest overall survival occurred 
in patients with the addition of 19p13 (7m) and trisomy 16 (9m). Superior survival occurred in those patients in trisomy 14 (25m), 
monosomy 11 (21m), trisomy 3 (19m) and trisomy 7 (19m).
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