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Abstract

Background: Evidence from numerous observational studies and 
clinical trials has linked gut microbiota and metabolites to digestive 
tract cancer. However, the causal effect between these factors remains 
uncertain.

Methods: Data for this study were obtained from the MiBioGen, 
TwinsUK Registry, and FinnGen (version R8). Two-sample Mende-
lian randomization analysis with inverse variance weighting method 
was primarily used, and the results were validated by heterogeneity 
analysis, pleiotropy test, and sensitivity analysis.

Results: At P < 5 × 10-8, our analysis identified four gut microbio-
tas as risk factors for digestive tract cancer and six as risk factors 
for colorectal cancer. Conversely, one gut microbiota exhibited pro-
tection against bile duct cancer, and two showed protective effects 
against stomach cancer. At P < 1 × 10-5, our investigation revealed 
five, six, three, eight, eight, and eight gut microbiotas as risk factors 
for esophageal, stomach, bile duct, liver, pancreatic, and colorectal 
cancers, respectively. In contrast, four, two, eight, two, two, and five 
gut microbiotas exhibited protective effects against these cancers. Ad-
ditionally, GABA, a metabolite of gut microbiota, displayed a signifi-
cant protective effect against colorectal cancer.

Conclusion: In conclusion, specific gut microbiota and metabolites 
play roles as risk factors or protective factors for digestive tract cancer, 

and a causal relationship between them has been established, offering 
novel insights into gut microbiota-mediated cancer development.

Keywords: Gut microbiota; Gut metabolites; Digestive tract cancer; 
Causal effect; Mendelian randomization

Introduction

The gut microbiota emerges as a pivotal determinant of host 
well-being, exerting its influence from the earliest stages of life 
[1, 2]. Among the diverse microbial communities inhabiting the 
human body, the gut microbiome has garnered considerable at-
tention and extensive exploration [3]. Mounting evidence im-
plicates intricate associations between cancer development and 
somatic mutations, epigenetic modifications in neoplastic cells, 
as well as interplay among host genetic variations, immune 
responses, environmental exposures, and the microbiome [4]. 
Leveraging cutting-edge molecular tools, researchers are pro-
gressively unraveling the intricate dynamics between the host 
and diverse microbial entities, wherein the gut microbiota has 
been recognized as a potentially influential risk or protective 
factor across a spectrum of diseases, including cancer [5, 6]. 
Despite the weighty epidemiological evidence, discerning the 
precise contribution of microbes to human cancer pathogenesis 
remains a formidable challenge, warranting meticulous inquiry 
into the underlying genetic and molecular mechanisms that un-
derpin their putative causal relationship.

Over the past decade, genome-wide association studies 
(GWAS) have revolutionized the landscape of complex dis-
ease genetics by examining millions of genetic variants to 
uncover associations between genotypes and phenotypes [7]. 
By investigating the relationship between common single-nu-
cleotide polymorphisms (SNPs) and diseases or other pheno-
typic traits on a genome-wide scale, GWAS have opened up 
novel avenues for comprehending the underlying mechanisms 
of complex diseases. Additionally, Mendelian randomization 
(MR) analyses employ genetic variants, typically SNPs, as 
instrumental variables (IVs) to infer potential causal relation-
ships between exposures and outcomes [8-10]. Since SNPs are 
randomly allocated at the point of conception and remain unaf-
fected by confounding variables, the impact of such confound-
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ing factors can be minimized. In addition, because the geno-
type of an individual’s exposure is determined at the time of 
conception, this cannot be changed, whereas the SNPs for the 
outcome are de-matched by exposure, meaning that the expo-
sure precedes the outcome. Therefore, there will be no reverse 
causality where causality is associated with genotype, which is 
another advantage of MR. To summarize, MR analysis offers 
more robust evidence for inferring causality than traditional 
observational studies [10, 11].

Given the absence of studies investigating the causal link 
between gut microbiota, gut metabolites, and digestive tract 
cancer, we undertook a population-based study on a European 
cohort to examine this relationship. The objective of our study 
was to ascertain the existence of a causal relationship between 
gut microbiota, gut metabolites, and digestive tract cancer. The 
findings from this study will contribute to a deeper understand-
ing of the involvement of gut microbiota and metabolites in the 
pathogenesis of digestive tract cancer, leading to the develop-
ment of more targeted cancer surveillance protocols. These pro-
tocols aim to enable early detection of cancer or pre-cancerous 
lesions, thereby reducing the burden on healthcare resources.

Materials and Methods

A two-sample MR design was employed to investigate the 
causal relationship between gut microbiota, gut metabolites, and 
the risk of developing digestive tract cancer. In this MR study, 
we considered gut microbiota as the exposure factor and diges-
tive tract cancer as the outcome. To fulfill the requirements of 
the MR approach, independent genetic variants were utilized as 
IVs, and they needed to satisfy three crucial assumptions [11]: 
1) strong association of IVs with the exposure; 2) absence of 
pleiotropic associations between IVs and any known confound-
ing factors; and 3) absence of prognostic associations, except 
potentially with the exposure. To ensure the integrity of the anal-
ysis, genetic data pertaining to gut microbiota, gut metabolites, 
and digestive tract cancer were extracted from separate GWAS 
datasets, thereby eliminating sample overlap. A comprehensive 
overview of this MR study can be found in Figure 1.

Exposure data

Summary data on gut microbiota were collected from two 
sources: The MiBioGen (international consortium MiBioGen) 
and TwinsUK Registry (The UK Adult Twin Registry), which 
included five levels (phylum, class, order, family, and genus), 
212 taxa, 18,340 participants and one level (species), four 
taxa, 1,126 twin pairs, respectively. Additionally, data on gut 
metabolites were derived from the Framingham Heart Study 
(FHS), encompassing eight types of metabolites (betaine, 
β-hydroxybutyric acid (BHB), carnitine, choline, γ-amino-
butyric acid (GABA), propionic acid, serotonin, trimethyl-
amine N-oxide (TMAO)), with a total of 2,076 participants in-
cluded in the analysis. The specifics are shown in Table 1. No 
weak IVs were identified among the exposure factors, and all 
F-statistics exceeded 10, indicating minimal bias due to weak 

IVs (Supplementary Tables S1, S2, and S3, www.wjon.org). 
The MiBioGen dataset, a large multiethnic GWAS collabora-
tion, consisted of 18,340 participants from 16 cohorts across 
various countries, including the United States, Canada, Israel, 
Korea, Germany, Denmark, the Netherlands, Belgium, Swe-
den, Finland, and the United Kingdom. This dataset included 
24S ribosomal RNA gene sequencing and genotype data, ena-
bling the exploration of the association between human auto-
somal gene variants and the gut microbiome [12]. The Twins 
UK Registry, established in 1993 at King’s College London, 
is the largest adult twin program in the UK. The registry com-
prises individuals ranging in age from 16 to 98 years and aims 
to investigate the genetic and environmental factors underly-
ing complex traits and diseases [13]. FHS is the world’s largest 
population-based family study, characterized by a substantial 
sample size and a long observation period spanning three gen-
erations. The dataset is rich in cardiometabolic phenotype in-
formation and is based on family structure. It provides a unique 
opportunity to examine the impact of genetic, environmental, 
and clinical factors on the plasma metabolome [14, 15].

IV selection

We conducted a comprehensive analysis of bacterial taxa at 
six levels (phylum, class, order, family, genus, and species), 
considering each unique taxon as a characteristic. To ensure 
the reliability of our conclusion regarding the causal relation-
ship between gut microbiota, gut metabolites, and the risk of 
developing digestive tract cancer, we implemented a rigorous 
quality control process to select the most suitable IVs. First, 
we employed two thresholds to identify SNPs significantly as-
sociated with gut microbiota and gut metabolites as IVs. Using 
a genome-wide significance threshold of P < 5 × 10-8, only a 
limited number of IVs were available. To achieve a more com-
prehensive exploration of the potential causal relationship, we 
employed a lower genome-wide significance threshold of P < 
1 × 10-5, resulting in the inclusion of additional IVs. Second, 
we applied a minor allele frequency (MAF) threshold of 0.01 
for the variant of interest. Third, to mitigate bias, we selected 
exposure factors that were SNPs with no significant linkage 
disequilibrium (LD) and a closely pairwise correlation (R2 < 
0.01), while considering a clumping distance of 10,000 kb. 
Fourth, we excluded palindromic SNPs (e.g., those with A/T or 
G/C alleles) to avoid potential issues related to strand orienta-
tion or allele coding. Additionally, we carefully compared the 
alleles with the human genome reference sequence (build 37) 
and removed ambiguous or duplicated SNPs. These stringent 
criteria were applied to ensure the validity and robustness of 
our analyses and to minimize potential biases in our results.

Outcome data

We utilized aggregated data from the FinnGen (R8) database 
that encompasses cancer-related GWAS studies. The pooled 
data consisted of information on digestive tract cancer, es-
ophagus cancer, stomach cancer, bile duct cancer, liver cancer, 
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pancreatic cancer, and colorectal cancer, with respective Eu-
ropean population sizes of 9,822, 503, 1,227, 227, 648, 1,249, 
and 5,458 individuals (Table 1). The FinnGen database was 
established through a collaborative effort between academia 
and industry, with the aim of exploring genotype-phenotype 
correlations within the Finnish population and gaining insights 
into the impact of the genome on health [16].

MR analysis and sensitivity analysis

To explore potential causal relationships, we conducted a two-
sample unidirectional MR study to investigate the association 

between gut microbiota, gut metabolites, and various diges-
tive tract cancer, including esophagus cancer, stomach cancer, 
bile duct cancer, liver cancer, pancreatic cancer, and colorectal 
cancer. The primary analysis method used was the inverse-var-
iance weighted (IVW) test [17], employing the IVW method 
when the number of SNPs was ≥ 2, and the weighted ratio 
method for analysis when only one SNP was available. Ad-
ditional complementary methods, including weighted mode 
[18], MR-Egger intercept [19], weighted median [20], and 
simple mode [21], were also employed. The IVW method has 
been reported to exhibit slightly greater strength compared to 
other methods under specific conditions [20].

To ensure the robustness of the results, we conducted a 

Figure 1. Study design of the two-sample MR for the effect of the genetically predicted gut microbiome and gut metabolites 
on digestive tract cancer. MiBioGen: international consortium MiBioGen; TwinsUK Registry: the UK adult twin registry; FHS: 
Framingham Heart Study; LD: linkage disequilibrium; SNP: single-nucleotide polymorphism; MR: Mendelian randomization; IVs: 
instrumental variables; IVW: inverse-variance weighted.
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sensitivity analysis. First, we employed MR-PRESSO [22] and 
MR-Egger intercept to assess potential horizontal pleiotropy. 
The MR-PRESSO test helped identify and exclude SNPs that 
might introduce bias, with a P-value > 0.05 indicating the ab-
sence of horizontal pleiotropy. The remaining SNPs were used 
for MR analysis. Deviation of the MR-Egger intercept from 
the origin suggested potential horizontal pleiotropy effects of 
the IVs, with a P-value < 0.05 indicating such effects, while a 
P-value ≥ 0.05 suggested no evidence of horizontal pleiotropy 
among the selected IVs. Second, we employed the weighted 
median as an additional sensitivity analysis to evaluate the ro-
bustness of the MR estimates. Third, we calculated the F-statis-
tic to assess weak instrumental bias, considering a F-statistic < 
10 as indicative of weak IVs that may introduce bias and should 
be excluded [23]. Furthermore, Cochran’s Q statistic was used 
to assess heterogeneity in the IVW model, with a Q value great-
er than the number of instruments minus 1, suggesting the pres-
ence of heterogeneity and invalid instruments. A P-value < 0.05 
indicated the possible existence of heterogeneity [24].

All statistical analyses were performed using R (version 
4.0.2) and the TwoSampleMR package (version 0.5.6), which 
are open-source software tools.

Ethics approval and consent to participate

Ethical approval was not required for this study because our 
analysis used publicly available GWAS summary data, and 
these original GWAS had previously been approved by the ap-
propriate ethical and institutional review boards.

Results

SNP selection

After a quality control step, we identified 215 and 22 gut 
microbiota exposure phenotypes at the genus, family, order, 

class, phylum, and species levels of significance at P < 1 × 10-5 
and P < 5 × 10-8, respectively, with a significance level of 131, 
35, 20, 16, 9, 4 and 18, 5, 2, 1, 1, 2, respectively (Fig. 2a and 
Supplementary Figure S1A, www.wjon.org). At a significance 
level of P < 1 × 10-5, eight gut metabolites were finally identi-
fied as exposure phenotypes, namely betaine, BHB, carnitine, 
choline, GABA, propionic acid, serotonin, and TMAO (Fig. 3). 
The final number of IVs selected for each gut microbiota and 
gut microbiota metabolite is detailed in Supplementary Table 
S4 (www.wjon.org).

Causal relationship between gut microbiota and digestive 
tract cancer

Genome-wide statistical significance threshold P < 5 × 10-8

At a significance level of P < 5 × 10-8, our analysis revealed 
a causal relationship between specific gut microbiota and di-
gestive tract cancer, including stomach, bile duct, and colo-
rectal cancers (Fig. 2a, b). The IVW analyses indicated that 
certain microbial taxa, such as genus Erysipelatoclostridium 
(odds ratio (OR) = 1.569), class Actinobacteria (OR = 1.427), 
phylum Actinobacteria (OR = 1.627), and genus Intestinibac-
ter (OR = 1.525), were associated with an increased risk of 
digestive tract cancer when considered as exposure factors. 
Similarly, for colorectal cancer, the presence of genus Ery-
sipelatoclostridium (OR = 1.704), class Actinobacteria (OR= 
1.754), family Bifidobacteriaceae (OR = 1.569), genus Bi-
fidobacterium (OR = 1.555), order Bifidobacteriales (OR = 
1.569), and phylum Actinobacteria (OR = 2.103) were associ-
ated with an increased risk. Interestingly, we also identified 
some protective factors, such as genus Erysipelatoclostridium 
(OR = 0.044) associated with a reduced risk of bile duct can-
cer, and family Peptostreptococcaceae (OR = 0.258) and ge-
nus Romboutsia (OR = 0.261) associated with a reduced risk 
of stomach cancer when used as exposure factors. For further 
details, refer to Figure 2c, Supplementary Tables S5 and S6 

Table 1.  Description of Gut Microbiota, Metabolites, and Digestive Tract Cancer

Traits Consortium Sample size Populations Year Journal
Gut
    Gut microbiota MiBioGen 18,340 individuals European 2021 Nature Genetics

TwinsUK Registry 1,126 individuals European 2016 Cell Host & Microbe
    Gut metabolites FHS 2,076 individuals European 2013 Cell Metabolism
Cancer
    Digestive tract cancer FinnGen (R8) 9,822 cases European 2022 Nature
    Esophagus cancer FinnGen (R8) 503 cases European 2022 Nature
    Stomach cancer FinnGen (R8) 1,227 cases European 2022 Nature
    Bile duct cancer FinnGen (R8) 227 cases European 2022 Nature
    Liver cancer FinnGen (R8) 648 cases European 2022 Nature
    Pancreatic cancer FinnGen (R8) 1,249 cases European 2022 Nature
    Colorectal cancer FinnGen (R8) 5,458 cases European 2022 Nature
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(www.wjon.org).
These results were statistically significant (P < 0.05), and 

the MR-Egger regression and Cochran’s Q test provided no 
evidence of bias or heterogeneity (Supplementary Table S7, 
www.wjon.org).

Genome-wide statistical significance threshold P < 1 × 10-5

At a significance level of P < 1 × 10-5, we observed a broader 
range of causal associations between gut microbiota and di-
gestive tract cancer, including esophageal, stomach, bile duct, 
liver, pancreatic, and colorectal cancers. The IVW analyses re-

vealed the following findings (Supplementary Tables S8 and 
S9, www.wjon.org).

For esophageal cancer, certain microbial taxa such as 
family ClostridialesvadinBB60group (OR = 2.164), genus 
unknowngenus.id.1000000073 (OR = 2.164), class Alphapro-
teobacteria (OR = 2.360), genus Coprococcus2 (OR = 2.396), 
and genus Sellimonas (OR = 1.438) were identified as risk fac-
tors, while family Lachnospiraceae (OR = 0.501), genus Bu-
tyricimonas (OR = 0.544), genus CandidatusSoleaferrea (OR 
= 0.532), and phylum Verrucomicrobia (OR = 0.5260) were 
protective factors (Supplementary Figure S1B and D, www.
wjon.org).

For stomach cancer, genus Erysipelatoclostridium (OR = 

Figure 2. Causal effects of gut microbiome and digestive tract cancer based on the IVW method (SNPs with P < 5 × 10-8). (a) 
Heatmap of the P-value. Red color in the heatmap indicates a positive correlation between gut microbiome and digestive tract 
cancer and blue color indicates a negative correlation. The color depth represents the size of the P-value, with darker colors 
indicating more significant P-values. (b) Network interactions based on statistically significant ORs. Color and line thickness in 
the network diagram indicate the OR of gut microbiota and digestive tract cancer. Darker red color and thicker lines indicate 
higher OR values. (c) Forest plot with statistically significant ORs. OR > 1 indicates the positive correlation between a particular 
gut microbiota and a particular digestive tract cancer. OR < 1 indicates the negative correlation between the two. IVW: inverse-
variance weighted; GM: gut microbiome; SNP: single-nucleotide polymorphism; OR: odds ratio; 95% CI: 95% confidence interval; 
NSNP: number of SNP.
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1.540), genus Olsenella (OR = 1.257), genus Roseburia (OR = 
1.589), genus RuminococcaceaeUCG014 (OR = 1.524), genus 
Streptococcus (OR = 1.641), and genus unknowngenus.id.959 
(OR = 1.344) were associated with an increased risk, while 
genus LachnospiraceaeFCS020group (OR = 0.658) and genus 
RuminococcaceaeUCG004 (OR = 0.611) were protective fac-
tors (Supplementary Figure S1B and E, www.wjon.org).

For bile duct cancer, genus Alloprevotella (OR = 2.824), 
genus Tyzzerella3 (OR = 2.688), and order Lactobacillales (OR 
= 3.179) were identified as risk factors, while class Negativi-
cutes (OR = 0.310), family unknownfamily.id.1000001214 (OR 
= 0.476), genus Anaerotruncus (OR = 0.3402), genus How-
ardella (OR = 0.574), genus unknowngenus.id.1000001215 
(OR = 0.476), order Gastranaerophilales (OR = 0.476), order 
Selenomonadales (OR = 0.310), and species Akkermansiamu-
ciniphila (OR = 0.743) were protective factors (Supplemen-
tary Figure S1B and F, www.wjon.org).

For liver cancer, genus Barnesiella (OR = 2.177), fam-
ily Enterobacteriaceae (OR = 2.515), family unknownfamily.
id.1000005471 (OR = 1.810), genus Oscillospira (OR = 
2.121), genus unknowngenus.id.1000005472 (OR = 1.810), 
genus unknowngenus.id.2001 (OR = 1.742), order Enterobac-
teriales (OR = 2.515), and order MollicutesRF9 (OR = 1.810) 
were identified as risk factors, while genus Turicibacter (OR 
= 0.577) and phylum Firmicutes (OR = 0.570) were protec-
tive factors. Furthermore, among the risk factors identified 
for liver cancer, including family Enterobacteriaceae (OR = 
1.288), family unknownfamily.id.1000005471 (OR = 1.159), 
genus unknowngenus.id.1000005472 (OR = 1.159), order En-
terobacteriales (OR = 1.288), and order MollicutesRF9 (OR 
= 1.159), we observed that they were also associated with an 
increased risk of developing digestive tract cancer (Supple-

mentary Figure S1B and G, www.wjon.org).
For pancreatic cancer, genus Flavonifractor (OR = 2.124), 

genus unknowngenus.id.2041 (OR = 1.555), class Erysip-
elotrichia (OR = 1.616), family Erysipelotrichaceae (OR = 
1.616), genus Streptococcus (OR = 1.653), genus Terrisporo-
bacter (OR = 1.671), genus Victivallis (OR = 1.258), and order 
Erysipelotrichales (OR = 1.616) were associated with an in-
creased risk, while class Lentisphaeria (OR = 0.697) and order 
Victivallales (OR = 0.697) were associated with a decreased 
risk. Within the identified risk factors, we observed that genus 
Terrisporobacter (OR = 1.326) and genus Victivallis (OR = 
1.103) were specifically associated with an increased risk of 
developing digestive tract cancer (Supplementary Figure S1B 
and H, www.wjon.org).

For colorectal cancer, family Porphyromonadaceae (OR 
= 1.699), class Coriobacteriia (OR = 1.319), family Corio-
bacteriaceae (OR = 1.319), family Enterobacteriaceae (OR 
= 1.494), family Lactobacillaceae (OR = 1.346), genus Selli-
monas (OR = 1.142), order Coriobacteriales (OR = 1.319), 
and order Enterobacteriales (OR = 1.494) were associated 
with an increased risk, while class Bacteroidia (OR = 0.766), 
genus Eubacteriumfissicatenagroup (OR = 0.854), order Bac-
teroidales (OR = 0.766), phylum Bacteroidetes (OR = 0.680), 
and phylum Cyanobacteria (OR = 0.820) were protective fac-
tors. Among the identified factors, we observed that family 
Coriobacteriaceae (OR = 1.209), family Enterobacteriaceae 
(OR = 1.288), family Lactobacillaceae (OR = 1.213), family 
Porphyromonadaceae (OR = 1.389), genus Sellimonas (OR = 
1.103), and order Coriobacteriales (OR = 1.209) were all as-
sociated with an increased risk of digestive tract cancer. On the 
other hand, phylum Bacteroidetes (OR = 0.790) was associ-
ated with a reduced risk of developing digestive tract cancer 

Figure 3. Causal effects of gut metabolite and digestive tract cancer based on the IVW method (SNPs with P < 1 × 10-5). (a) Heat-
map of the ORs. Color in the heatmap indicates the OR of gut metabolite and digestive tract cancer. Darker red color indicates 
higher OR values. The asterisk indicates statistically significant OR. (b) Correlation between GABA and colorectal cancer. IVW: 
inverse-variance weighted; SNP: single-nucleotide polymorphism; OR: odds ratio; MR: Mendelian randomization.
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(Supplementary Figure S1B and I, www.wjon.org).
All these results showed statistical significance (P < 0.05). 

The MR-Egger regression and Cochran’s Q test indicated no 
evidence of bias or heterogeneous associations (Supplemen-
tary Table S10, www.wjon.org).

Causal relationship between gut metabolites and digestive 
tract cancer

In our analysis of the causal relationship between gut metabo-
lites and digestive tract cancer, we conducted an IVW analysis 
on eight specific metabolites (at a significance level of P < 1 × 
10-5): betaine, BHB, carnitine, choline, GABA, propionic acid, 
serotonin, and TMAO. Among these metabolites, our findings 
revealed that GABA, a metabolite produced by the gut micro-
biota, exhibited a protective effect against colorectal cancer 
(OR = 0.965) (Fig. 3, Supplementary Tables S11 and S12, 
www.wjon.org). The P-values obtained from the MR-Egger 
regression and Cochran’s Q test were both greater than 0.05, 
indicating no evidence of bias or heterogeneous associations 
(Supplementary Table S13, www.wjon.org).

Sensitivity analysis

To ensure the robustness of our MR causal effect estimates, 
we performed several sensitivity analyses. These included the 
utilization of MR-Egger, weighted mode, simple mode, and 
weighted median estimator (WME) methods. Across all analy-
ses, no evidence of a horizontal pleiotropic effect was detect-
ed, as indicated by P-values greater than 0.05. Furthermore, 
no outliers were identified in the MR-PRESSO analyses, and 
the Cochran’s Q test revealed no significant heterogeneity (P > 
0.05) (Supplementary Table S14, www.wjon.org).

Discussion

Our study utilized genetic variants from the largest intestinal 
microflora GWAS, focusing on those that exhibited strong 
associations with comprehensive genetic data. Through our 
investigation, we identified several gut microbiota and me-
tabolites that potentially serve as risk or protective factors 
for digestive tract cancer, establishing a causal relationship 
between them. These findings hold significant implications 
for public health interventions aimed at reducing the risk of 
cancer. Notably, our study represents the first of its kind in 
exploring the causal relationship between gut microbiota, gut 
metabolites, and digestive tract cancer using MR analysis, as 
no prior studies have been published on this subject.

An increasing body of research has revealed a potential 
causal link between the gut microbiota we have selected and 
various digestive tract cancer, including esophageal, pancre-
atic, stomach, bile duct, liver, and colorectal cancers [25-30]. 
Additionally, several other studies have demonstrated associa-
tions between metabolites produced by the gut microbiota and 
the risk of developing digestive tract cancer [31-34].

In a specific study, 15S rRNA gene sequencing was uti-
lized to compare the fecal microbiota composition of 16 pa-
tients diagnosed with esophageal squamous cell carcinoma 
(ESCC) and 16 healthy individuals serving as control subjects. 
The findings of this study indicated that the gut microbiota 
of ESCC patients exhibited potential enrichment in pro-in-
flammatory and/or oncogenic bacteria (e.g., Butyricimonas, 
Veillonella, and Streptococcus), while simultaneously show-
ing depletion of butyrate-producing and/or potentially anti-
inflammatory bacteria (e.g., Butyricicoccus, Lachnospiraceae 
NK4A136 group, and Eubacterium eligens group). Moreo-
ver, investigations have identified logarithmic ratios between 
Streptococcus and Butyricicoccus, as well as Streptococcus 
and Lachnospiraceae NK4A136 group, as potential diagnostic 
biomarkers for ESCC [35]. However, it is important to note 
that our study’s results suggest a potentially different role 
for Butyricimonas and Lachnospiraceae as protective factors 
against esophageal cancer. Further studies are required to vali-
date these findings and provide more conclusive evidence.

Studies have consistently observed an elevated presence 
of Streptococcus in the intestines of patients diagnosed with 
stomach cancer [36-40]. Furthermore, investigations examin-
ing postoperative specimens of stomach cancer have reported 
an increased abundance of Streptococcus in stomach cancer 
tissues, suggesting its potential involvement as a causative 
agent in stomach cancer [41-43]. In alignment with these find-
ings, our study also identified an increased risk of stomach 
cancer when Streptococcus was considered as an exposure fac-
tor. Additionally, another study noted that patients with gastric 
intraepithelial neoplasia exhibited an enrichment of specific 
intestinal commensals in their gastric microbiota, including 
Romboutsia, Fusicatenibacter, Prevotellaceae-Ga6A1-group, 
and Intestinimonas, which demonstrated a protective effect 
[44]. Consistent with these observations, our study revealed a 
reduced risk of stomach cancer when genus Romboutsia was 
utilized as an exposure factor.

Our study supports the finding that Lactobacillales is a 
risk factor for bile duct cancer. Similarly, a study conducted by 
Jia et al [45] investigated the fecal microorganisms of patients 
with intrahepatic bile duct cancer and observed increased lev-
els of Lactobacillus, Actinomyces, Peptostreptococcaceae, 
and Alloscardovia compared to the healthy population. This 
discovery holds significant implications for the diagnosis and 
prediction of intrahepatic bile duct cancer.

The role of gut microbiota in the development and pro-
gression of liver cancer as a coordinator of the gut-liver axis 
has been emphasized [46]. Jiang et al [47] conducted a study 
investigating the gut microbiota of hepatocellular carcinoma 
(HCC) patients and identified higher abundances of Barnesiel-
la, Firmicutes, and Streptococcus in their intestines. Similarly, 
Yang et al [48] observed an association between HCC and gut 
microbiota, with a higher abundance of Streptococcus in the 
gut of HCC patients. Consistent with these studies, our find-
ings also indicate that Streptococcus and Barnesiella are risk 
factors for liver cancer. However, in contrast to previous find-
ings, we found that Firmicutes are protective factors for liver 
cancer.

In our study, we identified Flavonifractor and Streptococ-
cus as risk factors for pancreatic cancer. These findings are 
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consistent with previous research. A large-scale metabolome-
wide association study (MWAS) demonstrated an association 
between Flavonifractor sp90199495 and the metabolite X-
21849, which was found to be related to the risk of pancre-
atic ductal adenocarcinoma [49]. Additionally, another study 
observed significant differences in gut microbial composition 
between pancreatic cancer patients and healthy individuals, 
with higher levels of Streptococcus being associated with an 
increased risk of pancreatic cancer development and liver me-
tastasis. These findings suggest that Streptococcus may serve 
as a potential biomarker for the early diagnosis of pancreatic 
cancer and liver metastasis originating from pancreatic cancer 
[50]. Furthermore, Ogrendik’s study revealed a positive cor-
relation between salivary microbiota and the risk of pancre-
atic cancer [51]. The research specifically identified Porphy-
romonas gingivalis as a significant risk factor for pancreatic 
cancer.

The gut microbiota exerts a crucial influence on the ini-
tiation and progression of colorectal cancer [52]. Certain re-
searchers delve into the microbial mechanisms connected to 
the pathogenesis and advancement of colorectal cancer [53]. 
A meta-analytic study demonstrated a link between colorectal 
cancer and microbiota dysbiosis, with increased abundance of 
Porphyromonadaceae and Coriobacteriaceae in the intestines 
of colorectal cancer patients [54]. Another study conducted by 
Huo et al [55] investigated the gut mucosal microbiota associ-
ated with recurrence and survival in colorectal cancer patients. 
They observed that Bacteroidales, Coriobacteriaceae, and 
Porphyromonadaceae were associated with poorer survival 
and higher recurrence rates. Interestingly, they found that the 
effects of Bacteroidales differed based on their abundance at 
different tumor sites. High abundance of Bacteroidales at the 
extratumoral site was associated with better overall survival 
(OS) and disease-free survival (DFS), while high abundance 
at the tumor site was associated with poorer OS and DFS. 
They suggested that Bacteroidales at the extratumoral site 
might have a protective role in recruiting beneficial T cells 
and improving the prognosis of colorectal cancer patients, 
while Bacteroidales at the tumor site could act as pathogens 
leading to colorectal cancer recurrence. Consistent with these 
findings, our study also identified Coriobacteriaceae and Por-
phyromonadaceae as risk factors for colorectal cancer, while 
Bacteroidales were identified as protective factors. Further-
more, a study conducted by Fortoul et al [56] has identified 
Hemophilus influenzae as a potential protective factor against 
colorectal cancer. This observation is intriguingly associated 
with the up-regulation of NLRP3 inflammasome in response 
to Hemophilus influenzae infection. The presence of NLRP3 
inflammasome may contribute to the maintenance of gut mi-
crobiota homeostasis and decrease the risk of colorectal can-
cer. This intriguing finding suggests a promising avenue for 
further research.

The gut microbiota performs complex metabolic activi-
ties, generating various metabolites that can have both harmful 
and beneficial effects [57, 58]. These metabolites play a sig-
nificant role in the interactions between colorectal cancer cells 
and the gut microbiota. Multiple studies have demonstrated 
the inhibitory effect of GABA, a metabolite produced by gut 
microbiota, on the proliferation of colon cancer cells [59]. Fur-

thermore, GABA-producing Lactobacillus plantarum has been 
shown to induce apoptosis in drug-resistant colorectal cancer 
cells and inhibit metastasis [60]. In line with these findings, 
our study also identified GABA as a metabolite associated with 
a reduced risk of colorectal cancer. However, an animal study 
revealed that knockdown of the EphB6 gene in mice promoted 
tumor growth of colorectal cancer cells in a xenograft model 
by regulating GABA release [61]. Further research is needed to 
fully understand the role of GABA in colorectal cancer.

In addition to some of the known associations between gut 
microbiota and digestive tract cancer, we have identified ad-
ditional causal associations between gut microbiota and these 
tumors, but no studies have yet reported these associations. 
This is a novel finding that needs to be explored in further 
studies. Our study has important implications for pre-cancer 
screening and intervention. Although much progress has been 
made in identifying genetic variation in human diseases, most 
genetic risks remain unexplained. How gut microbiota affects 
the development and progression of digestive tract cancer still 
needs to be revealed by further biological studies. Further-
more, while our study primarily sought to explore the causal 
relationship between gut microbiota and digestive tract cancer, 
a robust association between gut microbiota and cancers not 
in the digestive tract is also evident. For instance, Cardeiro 
et al’s retrospective study identified a statistically significant 
correlation between enterococcal infection and a decreased oc-
currence of breast cancer [62]. This research direction holds 
great promise as well.

Human behavior and the environments in which they live 
are complex and are influenced by interactions between genes 
and the environment [63-66]. To eliminate confounding fac-
tors in epidemiologic studies, we used MR methods. The SNPs 
in our study were closely associated with the gut microbiota 
and were compared with multiple cancer databases. The re-
sults of sensitivity analyses showed statistical robustness, and 
no pleiotropy or heterogeneity was found. However, our study 
has some limitations. First, the key assumptions of MR have 
some limitations, and although we tried our best to exclude 
confounding factors, we cannot fully guarantee the absence of 
other confounding factors or potential pleiotropic effects. Sec-
ond, because GWAS pooled data were used, the results may 
have been affected by different quality control and selection 
criteria. Third, the analytical principles of MR can only infer 
potential causal relationships and cannot identify specific bio-
logical pathways. Fourth, our study is mainly based on Euro-
pean populations and has limited generalizability to other eth-
nicities. Finally, due to the lack of data on applicable SNPs, we 
were unable to explore whether digestive tract cancer leads to 
alterations in gut microbiota through bidirectional MR studies. 
Therefore, the possibility of reverse causality needs to be con-
sidered with caution in our conclusions and we hope that data 
on appropriate SNPs will be available in the future for further 
study interpretation.

Conclusion

Our study conducted a comprehensive evaluation of the asso-
ciation between gut microbiota, gut metabolites, and digestive 
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tract cancer. Our findings suggest that certain gut microbiota 
and metabolites, when considered as exposure factors, can act 
as either risk factors or protective factors for digestive tract 
cancer. These results provide valuable new insights into the 
mechanisms by which the gut microbiota and gut metabolites 
influence the development of cancer.
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Fig. 15. Causal effects of gut microbiome and digestive tract 
cancer based on the IVW (inverse-variance weighted) method 
(SNPs with P < 1 × 10-5). (A) Heatmap of the P-value. Red 
color in the heatmap indicates a positive correlation between 
gut microbiome and digestive tract cancer and blue color in-
dicates a negative correlation. The color depth represents the 
size of the P-value, with darker colors indicating more signifi-
cant P-values. (B) Network interactions based on statistically 
significant odd ratios (ORs). Color and line thickness in the 
network diagram indicate the OR of gut microbiota and diges-
tive tract cancer. Darker red color and thicker lines indicate 
higher OR values. (C-I) Forest plot with statistically signifi-
cant ORs in seven different types of digestive tract cancer. OR 
> 1 indicates the positive correlation between a particular gut 
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nucleotide polymorphism; OR: odds ratio; 95% CI: 95% con-
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