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High Ki67 Gene Expression Is Associated With Aggressive 
Phenotype in Hepatocellular Carcinoma
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Abstract

Background: Hepatocellular carcinoma (HCC) with high Ki67 protein 
expression, the most commonly used cell proliferation marker, is as-
sociated with an aggressive biologic phenotype; however, conventional 
immunostaining is hampered by variability in institutional protocol, 
specific antibody probe, and by assessor subjectivity. To this end, we 
hypothesized that Ki67 gene (MKi67) expression would identify highly 
proliferative HCC, and clarify its association with oncologic outcome, 
tumor progression, and immune cell population in the tumor microen-
vironment (TME). Furthermore, we sought to identify the cell-cycle 
gene expression profile that confers this aggressive phenotype.

Methods: A total of 473 HCC patients with clinicopathological data 
associated with transcriptome were selected for this study: 358 patients 
from The Cancer Genome Atlas (TCGA) as the testing cohort, and 115 
from GSE76427 as the validation cohort. Each cohort was divided into 
a highly proliferative group (MKi67-high) and the low MKi67 group 
(MKi67-low) by the median of Ki67 gene (MKi67) expression levels.

Results: MKi67-high HCC patients had worse disease-free survival 
(DFS), disease-specific survival (DSS), and overall survival (OS) inde-
pendent of histological grade in the TCGA cohort. MKi67 expression 
correlated with histological grade and tumor size. MKi67 expression 
increased throughout the HCC carcinomatous sequence from normal 
liver, cirrhotic liver, early HCC, and advanced HCC. MKi67-high HCC 

was associated with higher intratumor heterogeneity, homologous re-
combination deficiency, and altered fraction as well as intratumoral 
infiltration of T helper type 1 (Th1) and Th2 cells, but lower interferon-
gamma response and M2 macrophage infiltration. Cell proliferation-
related gene sets in the Hallmark collection (E2F targets, G2M check-
point, Myc target v1 and mitotic spindle), MTORC1 signaling, DNA 
repair, PI3K MTOR signaling, and unfolded protein response were all 
enriched in the MKi67-high HCC (false discovery rate (FDR) < 0.25).

Conclusions: High MKi67 gene expression identified highly prolif-
erative HCC with aggressive biology involving classical pathways 
in cell cycle regulation and DNA repair, as well as poor overall on-
cologic outcomes. This suggests potential for personalized treatment 
strategies, but validation and refinement of these observations require 
further research to elucidate the underlying mechanisms and validate 
therapeutic targeting of these pathways in MKi67-high HCC tumors.

Keywords: MKi67; Gene expression; HCC; Outcomes; Signaling 
pathways

Introduction

Hepatocellular carcinoma (HCC) ranks as the fourth leading 
cause of cancer-related deaths worldwide and is currently the 
fastest growing cause of cancer-specific mortality in the United 
States [1, 2]. HCC frequently arises in individuals with chronic 
liver disease, commonly due to persistent hepatoviral infection 
or nonalcoholic fatty liver disease (NAFLD) [3, 4]. The progno-
sis of patients with HCC is generally poor with an overall 5-year 
survival of approximately 18% [5]. This is because most patients 
(60%) are diagnosed with an advanced disease, which makes 
them ineligible for curative intent treatment [6]. Consequently, 
the identification of precise prognostic biomarkers holds the po-
tential to enhance patient selection and identify those who are 
more likely to benefit from aggressive HCC treatment.

Ki67 is a protein predominantly found in the nucleolar 
cortex and exhibits high expression in the majority of prolifer-
ating malignant cells, while being seldom expressed in normal 
cells. Ki67 is recruited into chromosomes during cell division, 
and its concentration rises during the transition from grade 1 
(G1) to mitosis with a rapid decrease in later phases [7-9]. As a 
result, it is one of the most employed clinical markers for cell 
proliferation in many malignancies [10-14]. Prior studies have 
shown that Ki67 expression is correlated with worse tumor 
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biology and poorer overall outcomes in patients with central 
nervous system malignancies, renal cell carcinoma, adrenocor-
tical carcinoma, and uterine cancer [15, 16]. In patients with 
HCC, a recent meta-analysis showed that high Ki67 protein 
expression was associated with larger tumor size, higher num-
ber of lymph node metastases, cirrhosis, vascular invasion, and 
presence of distant metastasis [17].

The most widely adopted method by which Ki67 is as-
sessed and reported is through immunostaining. However, 
conventional immunostaining is subject to user variability 
and subjective interpretation, and results are histology-specif-
ic [18-20]. In this context, the expression of the Ki67 gene 
(MKi67), which is more objective and accurately quantifi-
able than immunohistochemistry, can be employed to identify 
highly proliferative HCC [21]. We therefore hypothesized that 
HCC with high MKi67 expression correlates with overall on-
cologic outcomes, and we sought to investigate its association 
with aggressive tumor biology.

Materials and Methods

Clinical and transcriptomic data acquisition

We utilized The Cancer Genome Atlas (TCGA) that collected 
the untreated bulk tumors and their associated transcriptomes 
with the clinicopathological data of each patient as we previ-
ously described [22-36]. TCGA is a comprehensive, collabora-
tive initiative that systematically characterizes gene expression 
profiles across various cancer types. It provides a vast reposi-
tory of genomic and clinical data, facilitating in-depth analyses 
to better understand the molecular basis of cancer. There are 
358 HCC patients included in TCGA cohort that we used in 
our previous studies [37-43]. It is important to note, however, 
that the TCGA dataset lacks certain demographic and clinical 
characteristics such as patients’ medical history or treatment 
modalities. Similarly, factors such as smoking, socioeconomic 
status or diet were inaccessible to the authors.

This dataset was further validated using an additional 
115 patients from the Gene Expression Omnibus (GEO) 
GSE76427 cohort [44]. Tumor characteristics: grade, size, 
node and staged were obtained from the Genomic Data Com-
mons (GDC) Data Portal and reported according to the Ameri-
can Joint Committee on Cancer (AJCC) classification. We 
compared the GSE6764 (n = 75) cohort to the GSE89377 (n 
= 107) cohort [45, 46] to investigate the association between 
MKi67 expression, clinicopathological characteristics and 
outcomes from GEO repository. HCC pathological classifica-
tion in GSE6764 followed the guidelines of the International 
Working Party and was defined as: 1) Very early HCC (n = 8), 
well-differentiated tumors < 2 cm in diameter with no vascular 
invasion/satellites (size range: 8 - 20 mm); 2) Early HCC (n 
= 10), tumors measuring < 2 cm with microscopic vascular 
invasion/satellites; well to moderately differentiated tumors 
measuring 2 - 5 cm without vascular invasion/satellites; or 2 
- 3 well-differentiated nodules measuring < 3 cm (size range: 
3 - 45 mm); 3) Advanced HCC (n = 7), poorly differentiated 
tumors measuring > 2 cm with microvascular invasion/satel-

lites or tumors measuring > 5 cm; and 4) Very advanced HCC 
(n = 10), tumors with macrovascular invasion or diffuse liver 
involvement. For the GSE89377 cohort (n = 107), they were 
defined as: normal (n = 13), dysplasia (n = 22), cirrhosis (n = 
12), low-grade chronic hepatitis (n = 8), high-grade chronic 
hepatitis (n = 12), early HCC (n = 5), HCC grade 1 (n = 9), 
HCC grade 2 (n = 12) and HCC grade 3 (n = 14) [47].

Patients were divided into two groups based on their MKi67 
gene expression levels. Those whose MKi67 gene expression 
levels exceeded the median were designated as the highly pro-
liferative group (MKi67-high), whereas the remaining patients 
in each cohort were grouped as the MKi67-low group.

All genomic analyses used were log2 transformed normal-
ized transcriptomic data. The TCGA and all GEO cohorts used 
in this study are deidentified and available within the public 
domain, therefore the Institutional Review Board was waived. 
The declaration of ethical compliance with human study was 
not applicable.

Tumor microenvironment

The xCell algorithm obtained through the xCell website [48], 
was used to calculate the immune cell infiltration in the tu-
mor microenvironment through transcriptomic data as we de-
scribed previously [43, 49-51]. The scoring of homologous 
recombination, intratumor heterogeneity, fraction altered, 
silent mutation, non-silent mutation, single-nucleotide vari-
ant (SNV) neoantigens, indel neoantigens, leukocyte fraction, 
lymphocyte infiltration, and interferon (IFN)- response score 
was performed as published by Thorsson et al [52].

Gene set enrichment analysis (GSEA)

The publicly-available software (GSEA version 4.0.3) and the 
GSEA algorithm were used in this study [53]. Statistical sig-
nificance was determined to have a false discovery rate (FDR) 
of 0.25.

Statistical analysis

Statistical significance for comparison analysis between groups 
was set at P less than 0.05 by the Kruskal-Wallis test, the Mann-
Whitney U test and two-tail Fisher’s exact tests. Survival analy-
sis was performed with the Kaplan-Meier method and log rank 
test. Statistical analyses and data plotting were performed in R 
software version 4.2.3 (R Project for Statistical Computing).

Results

MKi67-high HCC patients had worse disease-free, disease-
specific, and overall survival (OS) in the TCGA cohort

First, relationships between MKi67 expression and survival 
outcomes were assessed. MKi67-high expression was sig-
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nificantly associated with worse disease-free survival (DFS), 
disease-specific survival (DSS) and OS, when compared to 
MKi67-low expression in TCGA (P < 0.001 for all compar-
isons), although these results were not validated in in GEO 
GSE766427 cohort (OS P = 0.364 and PFS P = 0.751) (Fig. 1).

Given that higher histological grade is a pathological de-
termination of cancer cell proliferation, we did a subgroup 
analysis of MKi67-high vs. low stratified by histological grade 
(Fig. 2). Our results demonstrated that MKi67-high had worse 
oncologic outcomes across all histological grades, but it is more 
pronounced in histological grade 3 (G3) tumors. Nevertheless, 
DFS in G1 and OS in grade 2 (G2) tumors did not reach statisti-
cal significance (P = 0.978 and P = 0.072, respectively).

MKi67 expression was positively correlated with HCC 
progression

Given that MKi67 was associated with worse oncologic out-
comes, we hypothesized that MKi67 expression increases in 
a stepwise progression from normal liver to early HCC to ad-
vanced HCC. MKi67 expression was therefore measured at 
each phase of histological progression in the GSE6764 and 

GSE89377 cohorts (Fig. 3). We found that MKi67 expression 
increased in a stepwise fashion from early to advanced HCC 
(P ≤ 0.001) with no significant difference between the normal, 
dysplastic, and cirrhotic liver in the GSE6764 cohort (normal 
liver vs. early HCC P = 0.015; normal vs. advanced HCC P < 
0.001; normal vs. very advanced HCC, P < 0.001). We validat-
ed these results with the GSE89377 cohort, showing MKi67 
expression was also significantly enhanced in higher grades 
of HCC compared with normal, dysplastic, and cirrhotic liver 
and low- and high-grade chronic hepatitis (normal vs. G1, P = 
0.025; normal vs. G2, P = 0.025; normal vs. G3, P < 0.001).

MKi67 expression correlated with histological grade, tu-
mor size, lymph node metastasis and AJCC stage in HCC

Next, we investigated whether MKi67 expression was associat-
ed with aggressive tumor characteristics in HCC. To this end, we 
evaluated the differences in MKi67 gene expression stratified by 
histological grade, T-category, N-category, and staging by AJCC 
as a clinical marker of tumor aggressiveness. Child-Pugh clas-
sification was also assessed as a marker of severity of liver cir-
rhosis. As expected, MKi67 expression strongly correlated with 

Figure 1. Relationship between MKi67 and survival outcomes in patients with HCC. (a) Kaplan-Meier survival curves comparing 
high- vs. low-MKi67 expression in HCC to determine disease-free survival (DFS), disease-specific survival (DSS), and overall 
survival (OS) in the TCGA (n = 358) cohort. (b) Kaplan-Meier survival curves comparing high- vs. low-MKi67 expression in HCC 
to determine overall survival and progression-free survival in the GSE76427 (n = 115) cohort. The P value was calculated using 
a log rank test. Significant P value < 0.05. HCC: hepatocellular carcinoma; TCGA: The Cancer Genome Atlas.
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histological grade (Fig. 4) (P ≤ 0.001). We found that MKi67 ex-
pression correlated with a higher T-stage (P < 0.001), although 
it was less clear in T4 tumors noting the small sample size. 
Node-positive tumors showed a non-significant trend toward 
higher expression of MKi67 (P = 0.053). MKi67 expression 
significantly correlated with higher stage consistently in both 
TCGA and GSE76427cohorts (P ≤ 0.001), with the exception of 
metastatic (stage IV) tumors. In terms of cirrhosis, normal liver 
showed the highest MKi67 expression. Notably, there was no 
statistically significant difference in MKi67 expression among 
any Child-Pugh class in the GSE76427 cohort (P = 0.208).

MKi67-high was significantly associated with intratumor 
heterogeneity, homologous recombination defects, and 
altered fraction

To understand the genomic profile in HCC with high versus 

low expression of MKi67, we evaluated the underlying muta-
tion rate of HCC using scores pre-calculated by Thorsson et 
al [52]. We found that homologous recombination defects, in-
tratumor heterogeneity and altered fraction were significantly 
higher in the MKi67-high HCC (P ≤ 0.001), but not silent mu-
tation rate (P = 0.601), non-silent mutation rate (P = 0.830), 
SNV neoantigens (P = 0.438), or indel neoantigens (P = 0.745) 
in the TCGA cohort (Fig. 5).

MKi67-high HCC was not consistently associated with 
immune cell infiltrations, except for T helper type 1 (Th1) 
and Th2 cells

In view of the higher homologous recombination defects but 
not mutation rates in MKi67-high HCC tumors, we sought to 
evaluate the relationship between MKi67 expression and im-
mune cell infiltration in the tumor microenvironment. Over-

Figure 2. Relationship between MKi67 and survival outcomes in patients with HCC broken down by histological grade. Kaplan-
Meier survival curves comparing high- vs. low-MKi67 expression in HCC to determine disease-free survival (DFS), disease-
specific survival (DSS), and overall survival (OS) in grade 1 (n = 53), grade 2 (n = 168), and grade 3 (n = 121) from TCGA cohort. 
The P value was calculated using a log rank test. Significant P value < 0.05. HCC: hepatocellular carcinoma; TCGA: The Cancer 
Genome Atlas.



Articles © The authors   |   Journal compilation © World J Oncol and Elmer Press Inc™   |   www.wjon.org 261

Ramos-Santillan et al World J Oncol. 2024;15(2):257-267

all, there was no association between MKi67 expression and 
lymphocyte infiltration, leukocyte fraction, or transforming 
growth factor (TGF)-beta response and (Fig. 6a). Interestingly, 
IFN-gamma response was attenuated in MKi67-high tumors 
(P = 0.002). The only immune cells that were highly repre-
sented in MKi67-high tumor microenvironment were Th1 and 
Th2 cells. In contrast, M2 macrophages were significantly 
overrepresented in the MKi67-low tumor microenvironment. 
Moreover, while alpha-fetoprotein (AFP) exhibited a signifi-
cant elevation in MKi67-high tumors within the TCGA cohort, 
this association did not reach statistical significance in the 

GSE76427 cohort (Fig. 6b).

MKi67-high HCC is associated with cell proliferation-
related and cell-cycle gene sets

Considering MKi67-high HCC was associated with aggressive 
clinical characteristics, we conducted a GSEA in the TCGA 
and GSE76427 cohorts to investigate enriched pathways as-
sociated with MKi67-high tumors. As expected, we found 
significant enrichment of cell proliferation-related gene sets 

Figure 3. Relationship between MKi67 expression and histological progression of HCC. Boxplots of the MKi67 expression by 
multistep hepatocarcinogenesis, including normal liver tissue (n = 10), dysplasia (n = 17), cirrhosis (n = 13), very early HCC (n 
= 8), early HCC (n = 10), advanced HCC (n = 7), and very advanced HCC (n = 10) in the GSE6764 (n = 75), The P value was 
calculated using a Kruskal-Wallis test. HCC: hepatocellular carcinoma.

Figure 4. Comparison of the MKi67 expression and grade, T-stage, node status and AJCC stage in the TCGA (n = 358) cohort 
and MKi67 expression and Child-Pugh classification and AJCC stage in the GSE76427 (n = 115) cohort. P value < 0.05 was 
considered statistically significant. TCGA: The Cancer Genome Atlas; AJCC: American Joint Committee on Cancer.
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in the Hallmark collection: E2F targets, mitotic spindle, G2M 
checkpoints, Myc targets V1 (Fig. 7). Furthermore, we found 
that gene sets that reflect aggressive tumor biology: unfolded 
protein response (UPR), PI3K MTOR signaling, MTORC1 
signaling and DNA repair, were all enriched to MKi67-high 
HCC in both TCGA and GSE76427 cohorts.

Discussion

In this study, we found that high expression of MKi67 was 
associated with biologically aggressive HCC. Not only was 
higher expression of MKi67 positively correlated with aggres-
sive clinical tumor characteristics (histological grade, tumor 
size, and AJCC staging), but also intratumor heterogeneity, 
homologous recombination defects, and altered fraction. Fur-
ther, in our analysis of the GSE6764 and GSE89377 cohorts, 
MKi67 expression appeared to correlate with progression of 
HCC from early to advanced and histological grade from low-

er (G1) to higher (G2 and G3) in a stepwise fashion. Interest-
ingly, despite higher cell proliferation in MKi67-high HCC, 
there was no association with the degree of immune response 
(except for increased infiltrating Th1 and Th2 cells). More im-
portantly, high expression of MKi67 in HCC was associated 
with enriched expression of multiple genes involved in the cell 
cycle and DNA repair pathways.

Tumor markers play a crucial role in the diagnosis and 
prognosis of various cancers. In the context of HCC, AFP is 
the most extensively utilized biomarker for both diagnosis and 
prognostication [54]. Our study demonstrated a positive cor-
relation of AFP levels and MKi67 expression in the TCGA co-
hort but not in the GSE76427. While not directly connected to 
Ki67, AFP exhibits a dual regulatory role in cell proliferation. 
The impact of AFP on growth regulation, whether enhancing 
or inhibitory, is contingent upon the concentration of AFP and 
the levels of cytokines, hormones, and growth factors in the 
culture system [55]. However, it is worth noting that approxi-
mately 30-40% of HCC cases are AFP-negative. While a lack 

Figure 6. Relationship between MKi67 and immune response-related genes in the TCGA and GSE76427. (a) Boxplots of lym-
phocyte infiltration signature, leukocyte fraction, TGF-beta response, and IFN-gamma response. (b) Boxplots of anticancer im-
mune cells: CD8+ T cell, CD4+ T cell, T helper type 1 (Th1) cells, M1 macrophages and dendritic cells and pro-cancer immune 
cells including regulatory T cells (Treg), T helper type 2 (Th2) cells, M2 macrophages, hepatocytes and alpha-fetoprotein (AFP). 
The P value was calculated using the Mann-Whitney U test. Significant P value < 0.05. TGF: transforming growth factor; IFN: 
interferon; TCGA: The Cancer Genome Atlas; NK: natural killer; DC: dendritic cell.

Figure 5. Relationship between MKi67 and mutation related scores. Boxplots of the comparison of the high- vs. low-MKi67 
expression and homologous recombination deficiency, intratumor heterogeneity, fraction altered, Silent and non-silent mutation 
rates, single-nucleotide variant (SNV) neoantigens, and indel neoantigens. The P value was calculated using the Mann-Whitney 
U test. Significant P value < 0.05.
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of detectable AFP in the serum may be indicative of positive 
outcomes in liver cancer cases, it can also lead to an inaccurate 
diagnosis of liver cancer as a whole [56].

Ki67 expression, on the other hand, serves as a compre-
hensive surrogate measure of cell proliferation, and height-
ened expression is indicative of aggressive tumor behavior. 
Numerous studies support the pivotal role of Ki67 in cancer 
prognostics, as its expression is strongly correlated with the 
aggressiveness of various tumors, including those affecting 
the breast, pancreas, lungs, central nervous system, prostate, 
and salivary glands [57-63]. In resonance with this study, Luo 
et al found that high Ki67 protein expression was associated 
with more advanced HCC stages, poorer differentiation, larger 
tumors, as well as poorer DFS, RFS and OS [17]. However, in 
our study, Ki67 expression was evaluated by directly examin-
ing MKi67 gene expression. This approach has been proven to 
be more accurate in gauging tumor proliferation compared to 
assessing protein expression through immunohistochemistry 
(IHC). This superiority is attributed to its higher sensitivity, 

reproducibility, and reduced variability among users [64].
We found that intratumor heterogeneity, homologous re-

combination defects and altered fraction were significantly 
higher in the MKi67-high HCC. Intratumor heterogeneity has 
been found to influence tumor growth, metastasis, recurrence, 
and resistance to cytotoxic chemotherapy [65-68]. Similarly, 
homologous recombination defects have been associated with 
genomic scarring and a poor prognosis in HCC [69]. Addition-
ally, as reported by Liu et al, HCC tumors with higher altered 
fraction are associated with rapid proliferation and immune 
evasion and could result in an attenuated response to immu-
notherapy [70, 71].

This study revealed no association between lymphocyte 
infiltration, leukocyte fraction or TGF-beta response and 
MKi67 expression. Additionally, there was no significant in-
crease in pro-cancer immune cell proliferation except for Th1 
and Th2 cells in the MKi67-high tumors. A plausible expla-
nation for this weakened anticancer immune response might 
involve T cell exhaustion, a phenomenon previously explored 

Figure 7. Relationship between MKi67 expression and cell proliferation-related gene sets. Gene Set Enrichment Analysis (GSEA) 
was performed on the Hallmark gene sets, comparing MKi67-high vs. low scores in HCC across the TCGA and GSE76427 co-
horts Enrichment plots was generated displaying the normalized enrichment score (NES) and false discovery rate (FDR) for 
proliferation-related gene sets. An FDR of 0.25 was determined statistically significant as recommended by the GSEA software. 
(a) Cell proliferation-related gene sets in the Hallmark collection. (b) Genes related to aggressive tumor biology. HCC: hepatocel-
lular carcinoma; TCGA: The Cancer Genome Atlas.
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by Wu et al [72]. Despite the association of MKi67 upregula-
tion with increased infiltration of B cells, CD4+ T cells, CD8+ 
T cells, neutrophils, dendritic cells, and other functional T 
cells, MKi67 may concurrently contribute to T cell exhaus-
tion. This dual effect could result in a diminished anticancer 
immune response, characterized by the upregulation of critical 
genes such as TIM-3 and TIGIT. These genes, comparable to 
the therapeutic targets programmed death ligand-1 (PD-1) and 
cytotoxic T lymphocyte antigen (CTLA), play a role in regu-
lating T-cell responses and could act as therapeutic targets for 
immunotherapy drugs theoretically with fewer toxicities due 
to their more targeted activity [72].

To validate the association between pathological and bio-
logical characteristics with MKi67 expression, we conducted 
a gene-set enrichment analysis. We found that in both TCGA 
and the GSE76427 cohorts, MKi67-high HCC had significant 
enrichment of E2F targets, mitotic spindle, G2M checkpoints, 
Myc targets V1, UPR, PI3K MTOR signaling, MTORC1 sign-
aling, and DNA repair pathways. These cell proliferation-re-
lated and cell-cycle gene pathways genes have an important 
role in the pathogenesis of HCC. Our previous study showed 
that upregulation of individual E2F targets was associated with 
worse OS and DFS in HCC, especially the alterations in E2F3, 
E2F5 and E2F6 [73]. Furthermore, a metanalysis of c-Myc 
overexpression in HCC was associated with worse oncologic 
outcomes [74]. Even though the PI3K/Akt/mTOR pathway is 
upregulated in approximately 50% of HCC patients and plays 
an important role in the pathogenesis of this malignancy, clini-
cal studies have failed to demonstrate any capacity of mTOR 
inhibitors to decrease tumor growth or recurrence [75, 76]. 
Moreover, our group’s prior study on the role of the UPR in 
HCC demonstrated that the upregulation of UPR was associ-
ated with multiple parameters of cell proliferation, including 
MKi67 expression, enrichment of cell proliferation-related 
gene sets and mutational load that ultimately translated to 
worse survival of patients with HCC [39]. Similarly, Oshi et al 
showed that the DNA repair pathway was enhanced in higher 
histological grade HCCs, which also burdened with elevated 
tumor heterogeneity and higher mutational load ultimately 
yielding worse survival outcomes compared to HCCs without 
enriched DNA repair pathway [77].

This study provides evidence supporting the potential use 
of MKi67 expression as a prognostic marker in HCC and sheds 
light on its underlying biological mechanisms. These findings 
suggest that HCC tumors with high MKi67 expression may 
exhibit unique molecular characteristics. These characteristics, 
particularly those related to DNA repair pathways and immune 
responses, could potentially guide treatment strategies. For in-
stance, we speculate that HCC with high MKi67 expression 
might be more responsive to therapies targeting cell cycle 
regulation, DNA repair pathways, or immunomodulation. We 
highlight the possibility that these findings could inform per-
sonalized treatment strategies, with further research needed to 
validate and refine these speculations.

There are some limitations to our study. As we used publicly 
available cohorts, our results may not reflect the heterogeneity 
among the patients in the population. Unfortunately, our group 
did not have access to information regarding the patients’ medi-
cal history or treatment modalities such as surgery, local ablative, 

loco-regional or systemic therapy to the cohorts we analyzed. 
Additionally, the absence of detailed clinical follow-up data in 
some cases limits the ability to draw robust conclusions about 
responses to treatments. Similarly, factors such as smoking, so-
cioeconomic status or diet were inaccessible to the authors.

In conclusion, our study provides compelling evidence 
that high expression of MKi67 in HCC is closely linked to a 
more aggressive biological phenotype driven by the upregula-
tion of multiple interconnected pathways involved in cell cycle 
regulation, DNA repair and oncogenic signaling. Further clini-
cal studies are warranted to elucidate the underlying mecha-
nisms and validate the therapeutic potential of targeting these 
pathways in MKi67-high HCC tumors. Such efforts hold the 
promise of improving patient outcomes and advancing preci-
sion medicine approaches for the management of HCC.
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