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Abstract

Background: Testing for homologous recombination deficiency 
(HRD) mutations is pivotal to assess individual risk, to proact preven-
tive measures in healthy carriers and to tailor treatments for cancer pa-
tients. Increasing prominence of poly(ADP-ribose) polymerase (PARP) 
inhibitors with remarkable impact on molecular-selected patient sur-
vival across diverse nosologies, ingrains testing for BRCA genes and 
beyond in clinical practice. Nevertheless, testing strategies remain a 
question of debate. While several pathogenic BRCA1/2 gene variants 
have been described as founder pathogenic mutations frequently found 
in patients from Russia, other homologous recombination repair (HRR) 
genes have not been sufficiently explored. In this study, we present real-
world data of routine HRR gene testing in Russia.

Methods: We evaluated clinical and sequencing data from cancer pa-

tients who had germline/somatic next-generation sequencing (NGS) 
HRR gene testing in Russia (BRCA1/2/ATM/CHEK2, or 15 HRR 
genes). The primary objectives of this study were to evaluate the fre-
quency of BRCA1/2 and non-BRCA gene mutations in real-world 
unselected patients from Russia, and to determine whether testing be-
yond BRCA1/2 is feasible.

Results: Data of 2,032 patients were collected from February 2021 to 
February 2023. Most had breast (n = 715, 35.2%), ovarian (n = 259, 
12.7%), pancreatic (n = 85, 4.2%), or prostate cancer (n = 58, 2.9%). We 
observed 586 variants of uncertain significance (VUS) and 372 deleteri-
ous variants (DVs) across 487 patients, with 17.6% HRR-mutation posi-
tivity. HRR testing identified 120 (11.8%) BRCA1/2-positive, and 172 
(16.9%) HRR-positive patients. With 51 DVs identified in 242 formalin-
fixed paraffin-embedded (FFPE), testing for variant origin clarification 
was required in one case (0.4%). Most BRCA1/2 germline variants were 
DV (121 DVs, 26 VUS); in non-BRCA1/2 genes, VUS were ubiquitous 
(53 DVs, 132 VUS). In silico prediction identified additional 4.9% HRR 
and 1.2% BRCA1/2/ATM/CHEK2 mutation patients.

Conclusions: Our study represents one of the first reports about the 
incidence of DV and VUS in HRR genes, including genes beyond 
BRCA1/2, identified in cancer patients from Russia, assessed by 
NGS. In silico predictions of the observed HRR gene variants suggest 
that non-BRCA gene testing is likely to result in higher frequency 
of patients who are candidates for PARP inhibitor therapy. Continu-
ing sequencing efforts should clarify interpretation of frequently ob-
served non-BRCA VUS.
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Introduction

BRCA1 and BRCA2 play a key role in homologous recom-
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bination repair (HRR) of DNA damage and are necessary to 
maintain genomic integrity in proliferating cells [1]. Germline 
mutations in at least one of these highly penetrant genes are 
associated with hereditary breast and ovarian cancer (HBOC) 
syndrome, and substantially increase the risk of developing 
various cancer types [2-4], specifically breast, ovarian [5-11], 
prostate [11], pancreatic [11-14], as well as gastric cancer [15] 
and potentially melanoma [16]. Moreover, patients can be af-
fected with multiple cancers throughout the lifetime [17]. At 
the same time, it is becoming clear that not only BRCA1 and 
BRCA2 are responsible for the hereditary forms of these can-
cer types. BRCA1/2 interacts with a number of other HRR 
genes, including ATM, RAD51B/C/D, PALB2, RAD50, NBN, 
MRE11, CHEK2, BRIP1, BARD1 and the Fanconi anemia 
proteins [18-20]. Recent evidence suggests that mutations in 
PALB2 [21-27], ATM [23-26, 28-32], CHEK2 [24-26, 33] and 
other HRR genes, such as BARD1 [24-26], BRIP1 [27, 32, 34, 
35] and RAD51С/RAD51D [24-27, 32, 34, 36, 37] might in-
crease cancer risk. In recent years, poly(ADP-ribose) polymer-
ase (PARP) inhibitors have emerged as a highly effective drug 
class for patients with BRCA1/2-altered cancers. PARP plays 
a dominant role in DNA single-strand break repair, and the 
inhibition of PARP in BRCA1/2-positive tumors leads to the 
deficiency of single-strand break repair, eventually leading to 
cell death through a concept known as synthetic lethality [38].

PARP inhibitors such as olaparib, talazoparib, rucaparib, 
and niraparib have been approved for clinical use in the pres-
ence of BRCA1 or BRCA2 variants for the treatment of breast 
cancer [39, 40], prostate cancer [41, 42], ovarian cancer [43-
45], and pancreatic cancer [46]. The presence of variants of 
HRR genes other than BRCA1 or BRCA2 is an indication for 
olaparib therapy in patients with prostate cancer [41]. The ef-
ficacy of other PARP inhibitors for HRR-mutated prostate can-
cer has also been studied [47]. For breast [48] and ovarian [49] 
cancer, olaparib has also been shown to be relatively effective 
in the presence of variants of several HRR genes.

Next-generation sequencing (NGS)-based approaches 
give additional benefit via testing of broad target areas of all 
genes of interest. According to current recommendations, there 
is a certain group of patients who require molecular genetic 
testing of BRCA1/2 and other HRR genes. Testing people with 
a family or personal history of cancer facilitates individualized 
screening and recommendations to reduce the risk of develop-
ing hereditary forms of cancer [50]. According to recent data, 
approximately 5% of unselected patients with breast cancer 
[25, 26] and 12-14% of patients with epithelial ovarian cancer 
[10] might carry germline pathogenic variants in BRCA1/2. 
A positive family history increases the chance of identifying 
patients with germline BRCA1/2 variants [51, 52]. However, 
recent studies show that germline pathogenic variants can also 
be found in patients who do not have a family history of can-
cer, and do not meet the criteria for testing [26, 53-55]. Ac-
cording to various studies, about 27-56% of ovarian cancer 
patients with detected pathogenic BRCA1/2 variants had no 
reported family history of breast or ovarian cancer [52, 56]. 
The mean probability of finding a germline BRCA1/2 variant 
in epithelial ovarian cancer patients without a positive family 
history for breast and/or ovarian cancer is 6% [52]. This dif-
ference may be due to the presence of low-penetrate genes, 

with an as yet little studied association with cancer risk, or 
under-researched within the family, where a variant in a high-
penetrate gene can be passed through male family members 
and manifest as cancer at an older age.

The prevalence of pathogenic or uncertain significance 
(VUS) HRR variants in Russian cancer patients’ population, 
as well as the age of onset of developing cancer, associated 
with HBOC syndrome, is still poorly studied. There are previ-
ous publications reporting the occurrence of germline variants 
of the BRCA1/2 genes, as well as ATM in the Russian cancer 
patient’s population [57-60]. Here, we report the spectrum of 
BRCA1/2 and HRR gene mutations observed in an unselected 
real-world cancer patient population in Russia.

Materials and Methods

Study population

From February 2021 to February 2023, a total of 2,032 patients 
with breast, ovarian, prostate, pancreatic, and other types of 
cancer were rereferred for NGS testing of BRCA1/2 and other 
HRR genes as a part of routine patient management in five dif-
ferent laboratories (NIIECM FRC FTM, Russia, Novosibirsk 
- 115 for main analysis and additional 116 for the analysis of 
geographical distribution of repetitive variants; Republican 
Medical Genetic Center, Russia, Ufa - 916; GEMOTEST Lab-
oratory LLC, Russia, Moscow - 494; NMRCR, Russia, Mos-
cow - 33; OncoAtlas LLC, Russia, Moscow - 519). Study was 
approved by Sechenov University IRB, and was conducted in 
accordance with principles claimed in the Declaration of Hel-
sinki. All participants signed an informed consent, in accord-
ance with local law. All further analyses were based on the 
archival data that were stored in the database with no current 
connection to the patients’ identifiers.

Molecular testing

DNA isolation and NGS

DNA was isolated from either whole blood, or formalin-fixed 
paraffin-embedded (FFPE) tumor samples and subjected to 
NGS as previously described [61]. In general, QIAamp DNA 
Blood Kits (Qiagen) was used for DNA isolation from whole 
blood samples, and GeneRead DNA FFPE Kit (Qiagen) or 
QIAamp DNA FFPE Tissue Kit (Qiagen) was used for tumor 
samples. Concentration of extracted DNA as well as concentra-
tion of DNA libraries was measured using Qubit Fluorometers 
with Qubit dsDNA HS and BR Assay Kits (Thermo Fisher Sci-
entific), Bioanalyzer or TapeStation (Agilent Technologies).

DNA sequencing was performed on the Illumina plat-
form (MiSeq or NextSeq550) using Amplicon based NGS 
kits (IVD certified in Russia): Solo test ABC, Solo test ABC 
HRR edition. Solo test ABC covers coding regions of ATM, 
BRCA1, BRCA2 genes, and clinically relevant regions 
of CHEK2 gene [61]. Solo test ABC HRR edition covers 
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all coding regions of ATM (ENST00000278616), BARD1 
(ENST00000260947), BRCA1 (ENST00000471181), BRCA2 
(ENST00000544455), BRIP1 (ENST00000259008), CDK12 
(ENST00000447079), CHEK1 (ENST00000534070), CHEK2 
(ENST00000382580), FANCL (ENST00000402135), PALB2 
(ENST00000261584), PPP2R2A (ENST00000315985), RAD 
51B (ENST00000487270), RAD51C (ENST00000337432), 
RAD51D (ENST00000590016) and RAD54L (ENST0000 
0371975) genes (transcripts used for variant annotation are de-
noted in brackets). In order to pass quality control, sequencing 
data were required to have average depth of 250x and higher 
(650x for tumor samples), MAPD - 0.5 and lower and sensitiv-
ity to detect known BRCA variants of 99.8% and higher [61]. 
Sequencing datasets failing quality control were not used for 
retrospective analysis.

Analysis of NGS data and variant interpretation

The analysis of the sequencing data was conducted in accord-
ance with the previously described method [62, 63]. Briefly, 
reads were mapped on the human genome GRCh37.p13 assem-
bly. Samtools was used for preliminary evaluation of technical 
characteristics of identified variants, such as variant site cover-
age depth, observed alternative allele counts, and observed al-
ternative allele frequency. For additional technical annotation 
of identified variants Mutect2 [64], SiNVICT [65], FreeBayes 
[66] and SGA [67] were utilized. Variant calls were required to 
have P-value of 10 × 10-7 and lower after Bonferroni correc-
tion. Variants were evaluated based on ACMG [68] and Sher-
loc guidelines [69]. BRCA Exchange [70] and ClinVar [71] da-
tabases were used as main reference sources to classify known 
variants. Minor allele frequency data were referenced using 
the 1000 Genomes Project Database [72], the NHLBI GO Ex-
ome Sequencing Project [73], and the TOPMED Project [74]. 
dbSNP database (build 155) was used for variant annotation. 
Variants detected in tumor samples were classified as germline 
or somatic according to the previously described algorithm 
[62]. Variants were classified as somatic in case of 95% and 
higher probability of somatic origin. In case of 95% and higher 
probability of germline origin, variant was classified as ger-
mline. In other cases, variants were classified as of uncertain 
origin. Since the analyzed data contained both germline and 
somatic variants, germline pathogenic and likely pathogenic 
variants, as well as somatic oncogenic and likely oncogenic 
variants, were denoted in the manuscript as “deleterious” in 
order to unify terminology (DV). Variants of uncertain sig-
nificance, both somatic and germline, are referred to as VUS. 
CHEK2 variant p.Ile157Thr (rs17879961) was considered as 
non-deleterious and was not included in the final analysis [75].

Results

Patient population

In this study, we retrospectively analyzed sequencing data of 
2,032 patients referred for BRCA1/2 and/or broad HRR genes 

mutation analysis as a part of routine case management from 
February 2021 to February 2023. Thirty-nine of them had du-
plicate samples analyzed, mostly genomic DNA (n = 1,335, 
64.5%) and tumor DNA (n = 242, 11.7%) samples, resulting 
in 2,071 samples in total (Table 1). For 492 samples (23.8%), 
DNA origin was not available for retrospective analysis. Most 
patients were female (n = 1,177, 57.9%), 83 (4.1%) patients 
were male, and for other 772 (38%) patients’ sex was not avail-
able for retrospective analysis. Median age at testing was 54 
years for all genders. Mean age at testing was markedly lower 
in the females, which can be partly explained by the presence 
of very young outliers. The majority of patients had breast 
cancer (n = 715, 35.2%), ovarian cancer (n = 259, 12.7%), 
pancreatic cancer (n = 85, 4.2%) and prostate cancer (n = 58, 
2.9%). Diagnosis for 900 (44.3%) patients was not available 
for retrospective analysis. Across 1,132 patients with available 
diagnosis, 15 (1.3%) patients had tumor types that are not rou-
tinely tested for HRR gene alterations.

Sequencing results and findings

A total of 219 VUS and 372 DVs (including germline pathogen-
ic variants and somatic DVs) were detected with 358 (17.6%) 
patients carrying at least one DV, 160 (7.8%) patients carrying 
one or more VUS with no DV found and 1,514 (74.5%) with 
no DV or VUS detected (Fig. 1). Of all detected variants, 543 
(91.8%) were germline (354 DVs, 189 VUS), 16 (2.7%) were 
somatic (five DVs, 11 VUS), while 32 (5.4%) variants (13 
DVs, 19 VUS) could not be reliably classified as germline or 
somatic (variants of uncertain origin). After filtering out vari-
ants that were detected in more than one patient, 318 unique 
germline, and 31 variants of uncertain origin were observed, 
while all of the identified somatic variants were unique.

HRR-mutation positive rate defined as the presence of at 
least one DV in any HRR gene in the whole patient popula-
tion was 17.6% (95% confidence interval (CI): 15.9-19.2%) 
(Fig. 2). Across patients analyzed only for BRCA1/2/ATM/
CHEK2 genes, HRR-mutation positive rate was 18.5% (95% 
CI: 16.1-20.9%), whilst for patients analyzed for broad HRR 
gene panel, it was 16.7% (95% CI: 14.4-19.0%). Across breast 
cancer patients, 16.9% were HRR-mutation positive (95% CI: 
12.7-22.1%), and it was 21.6% for ovarian cancer (95% CI: 
7.3-29.8%). Across 715 patients with breast cancer, 98 (13.7%, 
95% CI: 11.2-16.2%) were identified with biomarker for PARP 
inhibitor indication according to FDA drug labeling (germline 
BRCA1/2 DV). Across a total of 100 BRCA1/2 germline DV 
identified in breast cancer patients, 11 were identified in tumor 
samples and 89 in blood samples, and no additional testing 
was deemed to be necessary to clarify detected variant origin 
for any breast patient. Across 259 ovarian cancer patients, 53 
(20%, 95% CI: 15.5-25.3%) were identified with biomarker 
for PARP inhibitor indication (germline or somatic BRCA1/2 
deleterious mutation) with a total of 53 DVs identified, 50 
(94%) of which were germline. In a single ovarian cancer pa-
tient, BRCA2 DV identified in a tumor sample was deemed 
to require verification by blood testing in order to clarify ori-
gin of variant. Across 1,003 patients tested for a broad HRR 
gene panel, 147 were identified with germline DV in one or 
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more genes associated with hereditary cancer syndrome and 
established recommendations on cancer preventive measures 
according to NCCN guidelines (NCCN-HC gene panel) with 
a total of 150 DVs detected (BRCA1/2 - 113, CHEK2 - 13, 
ATM - 8, RAD51C - 7, BRIP1 - 4, BARD1 - 3, PALB2 - 2), 11 
of which were identified in tumor samples. Across 103 tumor 
samples tested for a broad HRR gene panel, in a single case 
additional blood testing was deemed to be necessary due to 
identified DV of uncertain origin in NCCN-HC gene panel.

Among patients with germline DVs, the majority harbored 
variants in BRCA1/2 genes with a total of 183 (51% of all 
germline DVs identified) and 109 (29%) variants identified 
in BRCA1 and BRCA2, respectively. Across patients tested 
for BRCA1/2, ATM and CHEK2 genes, 24 (7.2%) CHEK2 
germline DVs were found and 21 (6.3%) ATM germline DVs 
were found. Across patients tested for broad HRR gene panel, 
BRCA1/2 DVs constituted 71% of all DVs identified followed 
by CHEK2 (8%), ATM (5%) and RAD51C (4%). Germline 
mutations in other genes were uncommon (17 DVs in total). 
Of all germline variants detected across all patients including 
VUS, the majority (n = 357, 66%) were DV, whilst 184 (34%) 
were VUS. Of 176 unique BRCA1/2 germline variants, 120 
were DV, whilst 56 were VUS. On the contrary, among non-
BRCA1/2 unique germline variants, the majority (n = 106, 
70%) were VUS, whilst 45 (30%) were DV (Fig. 3a). Across 
patients tested for BRCA1/2, ATM and CHEK2, the majority 
of identified germline VUS were identified in ATM (n = 42, 
40%) followed by BRCA2 (n = 37, 35%), BRCA1 (n = 14, 
13%) and CHEK2 (n = 11, 10%). Across patients tested for 

broad HRR gene panel, the majority of germline VUS were 
identified in ATM (n = 17, 14%), followed by BRIP1 (n = 23, 
19%), CDK12 (n = 16, 13%), BRCA2 (n = 13, 11%), BRCA1 
(n = 8, 6%) and CHEK2, RAD54L, PALB2, BARD1 (n = 7, 
4% for each).

Across 242 tumor samples analyzed, a total of 16 somatic 
mutations were identified, including 11 VUS and five DVs. 
None of the patients with somatic DV carried any germline 
variant, resulting in HRR-mutation positive rate due to somatic 
mutation of 2.0% (95% CI: 0.6-4.7%) (compared to a total of 
19.0% (95% CI: 14.2-24.5%) HRR-mutation positive rate ob-
served across patients with tumor testing). Single somatic DV 
was identified each in ATM, BRCA1, BRCA2, RAD51D and 
PPP2R2A. Three somatic VUS were identified in ATM, two 
each in BRCA1 and BRCA2 and single each in BRIP1, CDK12, 
RAD54L and BARD1. Across 37 ovarian cancer patients with 
tumor testing, two DVs (5%, 95% CI: 0.6-18%) and two VUS 
variants were identified (all in BRCA1/2). Across 67 breast 
cancer patients with tumor testing, no somatic variants were 
identified (95% CI: 0.0-5.3%). Across 25 prostate cancer pa-
tients with tumor testing, no somatic DVs were identified (95% 
CI: 0.0-13.7%) and two VUS variants were identified (both in 
BRCA1/2). Across 10 patients with somatic VUS detected, two 
carried somatic DV and no one carried germline DV.

Variants of uncertain origin were detected in ATM (n 
= 8, 25%), BRCA2 (n = 7, 21.8%), BRCA1 (n = 3, 9.4%), 
CDK12 (n = 3, 9.4%), BARD1 (n = 2, 6.3%), PALB2 (n = 2, 
6.3%), and RAD51D (n = 2, 6.3%). Single VUS of uncertain 
origin were also detected each in CHEK2, BRIP1, FANCL, 

Table 1.  Clinical and Demographic Characteristics of Patients Included in the Study

Patients 2,032
Samples 2,071
Patients with 
duplicate samples

39

Samples Total Tested for BRCA1/2/ATM/CHEK2 Tested for broad HRR gene panel
Genomic DNA 1,335 547 788
Tumor DNA 242 139 103
NOS 494 361 133
Patients No. of patients Patients with known age of testing Age of testing, mean ± SD (min. - max.) Median age of testing
Sex
  Female 1,177 991 52.2 ± 12.9 (7 - 87) 54
  Male 83 65 62.6 ± 10.9 (37 - 90) 54
  NOS 772 13 61.9 ± 10.7 (41 - 79) 54
Cancer type
  NOS 900 177 44.7 ± 13.7 (7 -78) 53
  Breast 715 584 51.9 ± 12.2 (20 - 90) 54
  Ovary 259 191 58.4 ± 10.6 (27 - 81) 54
  Pancreas 85 59 61.9 ± 8.6 (38 - 80) 54
  Prostate 58 44 65.8 ± 9.7 (41 - 87) 54
  Othera 15 14 52.1 ± 14.6 (33 - 80) 55

aOther: lung, uterus, bowel, head and neck, vulva, stomach, kidney, liver, biliary tract. NOS: not otherwise specified; SD: standard deviation.
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RAD51B, and RAD54L. Of 31 unique variants of uncertain 
origin, the majority were classified as VUS (n = 19, 61.3%). 
Prevalence of DV of uncertain origin across ovarian cancer pa-
tients with tumor testing was 2.6% (95% CI: 0.06-13%) (2.6% 

for VUS of uncertain origin), 0.0% across breast cancer pa-
tients (95% CI: 0.0-5.2%) (1.4% for VUS of uncertain origin) 
and 0.0% across prostate cancer patients (95% CI: 0.0-13.0%) 
(8% for VUS of uncertain origin). Further testing for clarifica-

Figure 1. Flow chart with the overview of germline variants identified in the study. Patients were tested with either Solo test ABC 
(a) or Solo test ABC HRR edition (b). HRR: homologous recombination repair.
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tion of origin of identified in tumor sample DV of uncertain 
origin due to potential risk for hereditary cancer and, thus, in-
dication for genetic counseling was required for one (0.4%) 
patient with tumor testing (95% CI: 0.0-2.3%). Further testing 
for clarification of origin of identified in tumor sample DV of 
uncertain origin for PARP inhibitor indication was required in 
0 (0.0%) patients (95% CI: 0.0-2.4%).

Across a total of 360 unique DVs and VUS detected, 95 
(26%) were novel, which were not previously annotated as 
based on dbSNP database. Each of the novel variants were 
detected only once. Across the identified novel germline vari-
ants, 53 were missense or inframe variants, 33 were nonsense, 
start-loss or splice site variants while the rest were frameshift 
variants. Only 37 novel variants (39%) were classified as DV, 
while the rest were VUS. Seventy-two novel germline vari-
ants were detected, 30 (41%) of which were classified as DV. 
Across all germline DVs, novel variants constituted 8% (22% 
for VUS). This results in a probability of detecting a novel 
variant in a single patient of 4.6% (4.5% for breast cancer) 
and a probability of detecting a novel germline variant of 3.5% 
(3.3% for breast cancer patients, 4.6% for ovarian, and 5.8% 
for pancreas). The majority of novel germline DVs were locat-
ed in BRCA1/2 genes (n = 22, 73%), resulting in a probability 
of detecting novel germline DV in BRCA1/2 in a single patient 
of 1% (ATM followed with 0.1%).

Repetitively observed germline variants

A total of 291 germline genetic variants (61 unique alleles), 
both in BRCA1/2 and non-BRCA1/2 genes, were identified 

in more than one patient (Fig. 3d, e). A total of 37 unique 
repetitive variants were observed in BRCA1/2 genes, and 
24 were located in non-BRCA1/2 genes. All of these vari-
ants were previously annotated in literature and public data-
bases. Among variants in BRCA1/2 genes, the majority were 
null variants (86.1%). Across non-BRCA1/2 variants, re-
petitive missense variants were more common (72.7%). The 
most commonly observed variant was BRCA1 p.Q1777fs 
(rs80357906), which was found in 80 patients, accounting for 
21.8% of all DVs identified across the whole patient popu-
lation (21.9% and 22.0% across breast cancer and ovarian 
cancer patients, respectively). Of variants found in three or 
more samples (n = 19), seven (36.8%) could be potentially 
identified via standard PCR panels currently used in Russia 
testing for common BRCA1/2 DV. The most commonly ob-
served variant (n = 13) in non-BRCA1/2 genes was CHEK2 
c.444+1G>A (rs121908698).

Given the fact that Russia exhibits significant regional 
differences in terms of ethnicities, it was decided to com-
pare the frequencies of germline genetic variants obtained 
from different regions. The largest and comparable groups 
of patients were derived from the Moscow region (Moscow 
patients, MP, n = 1,156) and Bashkortostan (Bashkortostan 
patients, BP, n = 788) (Fig. 4). While Moscow’s population 
is approximately 90% ethnic Russians, in the Bashkortostan 
population Russians make up only 48% while the rest of the 
population is represented by Tatars (27.0%) and Bashkirs 
(20.4%), according to the 2020 census. As expected, a dif-
ference was found between the most common germline vari-
ants: only 50% of the eight most frequently occurring vari-
ants were found to be the same in both groups. Of eight top 

Figure 2. Biomarker prevalence across diverse patient subgroups.
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variants in the BP, three were not found in the MP. Of these 
three variants, two were DV in the BRCA2 gene: rs80359447 
(n = 7) and rs80358754 (n = 6), representing 9.3% of all DVs 
found in the BRCA1/2 in the BP. Third unique for the BP 
variant rs766724817 in the CDK12 gene was classified as 
VUS, though six out of seven in silico tools predicted delete-
rious effect of the variant.

Top eight variants in the MP and in the BP cover 23.1% 
and 32.5% of all germline variants found in these groups of 
patients (P-value = 0.0167). Variants unannotated in dbSNP 
make up 16.6% and 12.2% in the MP and BP groups, respec-
tively (P-value = 0.1751).

Among the MP, 152 (13.1%) had DV in the BRCA1 or 
BRCA2, and 35 (3.0%) had DV in the non-BRCA genes, 
while for the BP, the corresponding values were 128 (16.2%) 
and 34 (4.3%), respectively. In the MP, 75 (6.5%) had no DV, 

but at least one VUS, and in the BP, 70 (8.9%) had no DV, but 
at least one VUS. Per each 100 MP and 100 BP patients, 8.9 
and 11.5 VUS variants were identified, respectively (P-value 
= 0.07).

Distribution of findings by tumor type

Germline variants (including DV and VUS) in the analyzed 
genes were identified across patients with breast (n = 204, 
61.3%), ovarian (n = 93, 27.9%), pancreatic (n = 23, 6.9%), 
prostate cancer (n = 10, 3%), biliary tract (n = 4, 1.2%), as well 
as uterine cancer (n = 1, 0.3%). Across breast cancer patients, 
the majority of germline variants were found in BRCA1 (n 
= 72, 35%) and BRCA2 (n = 52, 35.3%), as well as in ATM 
(n=20, 9.8%), CHEK2 (n = 14, 6.9%), BRIP1 (n = 12, 5.9%) 

Figure 3. Frequencies of detected germline variants in the analyzed genes. (a-c) Frequencies of DV and VUS variants de-
pending on the gene (a: whole patient population, b: breast cancer patients, c: ovarian cancer patients). (d, e) Frequencies of 
repetitively identified variants and their distribution by gene (d: BRCA1 and BRCA2, e: non-BRCA1/2). Asterisk indicates variants 
previously annotated as founder mutations and used to be broadly tested via PCR in Russia. (f, g) Distribution of DV and VUS by 
type of alteration in BRCA1/2 (f) and non-BRCA (g) genes (null variants comprises nonsense and canonical splice site variants). 
(h, i) Spectrum of DV in the whole population (h) and across breast cancer patients (i). VUS: variants of uncertain significance; 
DV: deleterious variants.
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and CDK12 (n = 11, 5.4%). Germline variants in other genes 
(including CHEK1, RAD54L, RAD51B, PALB2, RAD51C, 
BARD1, FANCL, and PPP2R2A) were less common (n < 
10). Across patients with ovarian cancer, germline variants 
in the following genes were the most common: BRCA1 (n = 
37, 39.8%), BRCA2 (n = 18, 19.4%), BRIP1 (n = 10, 10.8%), 
ATM (n = 8, 8.6%), and CHEK2 (n = 5, 5.4%). Across pa-
tients affected with pancreatic cancer, BRCA2 (n = 8, 34.8%) 
variants were the most common, followed by ATM (n = 
2), BARD1 (n = 2), and RAD54L (n = 2). Interestingly, no 
BRCA1 variants were observed in pancreatic cancer patients. 
Prostate cancer patients harbored germline variants in ATM (n 
= 2, 25%) and BRIP1 (n = 2, 25%), and variants in other genes 
(BRCA1, CHEK2, RAD51B, and CDK12) were observed in 
single cases. All germline variants identified in patients with 
biliary tract cancer were located in the ATM gene, whilst a 
uterine cancer patient had a BRCA2 genetic variant. Thus, 
among breast cancer patients, a total of 81 germline variants 
(61 unique) in genes other than BRCA1/2 were observed, 38 
(31 unique) across ovarian cancer patients, and 14 (all unique) 
and seven (six unique) across pancreatic and prostate cancer 
patients, respectively.

Across germline findings, DVs were more common than 
VUS for patients with breast (135 (66.2%) vs. 69 (33.8%)), 
ovarian (60 (64.5%) vs. 33 (35.5%)) and biliary tract (4 (100%) 
vs. 0 (0%)) cancers, whereas patients with pancreatic cancer 
harbored more VUS than DV (16 (69.6%) vs. 7 (30.4%)). DV 

and VUS variants were evenly distributed in prostate cancer 
patients (Fig. 1).

Distribution of germline variants by age

For 1,079 (53.3% of the study population) patients, the infor-
mation regarding patients’ age was available. Median age of 
testing for all patients was 54 years. Among tested patients, 
823 (76.3%) patients did not have any germline variants, DV 
or VUS, in any of the analyzed genes. For short, we will re-
fer to these patients as wild type. Of those, 445 patients had 
breast cancer. Median age of all wild type patients was 54 
years, and the median age of wild type breast cancer patients 
was 52 years. The difference in ages of the whole population 
and breast cancer patients without any germline variants was 
statistically insignificant (P = 0.1).

In the whole patient population, the median age of testing 
across all patients carrying DV and/or VUS variants in any of 
the HRR genes was 51 years. A difference in the ages of any 
genetic variant (DV and/or VUS) carriers and wild type pa-
tients was statistically significant (P = 0.006). Carriers of any 
DV were generally younger than wild type patients (median 
50 vs. 54 years, P = 0.0004), whereas no statistically signifi-
cant difference was observed between VUS carriers and wild 
type patients (median 56 vs. 54 years, P = 0.48). Among all 
DV carriers, carriers of BRCA1 DV tended to be younger than 

Figure 4. Geographical location of laboratories participated in study with at least 200 samples analyzed and corresponding 
repetitive germline damaging variants in HRR genes detected in each city in descending order of frequency. Variant was consid-
ered as repetitive if it was detected at least two times - for Moscow and Novosibirsk cities; at least three times - for Ufa. Data for 
Moscow collected based on patients tested with Solo ABC panel; for Ufa and Novosibirsk cities - Solo ABC HRR edition. Ethnic 
groups with at least 1% representation in each city population are provided for reference and based on the 2020 census in each 
city. HRR: homologous recombination repair.
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BRCA2 DV carriers (median, 48 vs. 54 years, P = 0.004). Me-
dian age of ATM DV carriers was 51 years, and 57 years for 
patients with ATM VUS. Median age for CHEK2 DV carriers 
was 46 years, and 41 years for VUS carriers. Finally, patients 
with germline DV in other HRR genes had a median age of 57 
years, while the median age for carriers of VUS in these genes 
was 60. Statistically significant difference was found between 
age distributions of all patients with BRCA1 DV, regardless 
of tumor type, when compared to HRR wild type patients (P = 
0.00002), as BRCA1 DV carriers were younger. Another sta-
tistically significant relationship was found between age distri-
butions of BRCA1 DV and HRR DV, as well as VUS carriers 
(P = 0.02 and P < 0.0001, respectively), as well as when com-
paring HRR VUS carriers with BRCA2 DV and VUS carriers 
(P = 0.04 and 0.035, respectively), ATM VUS carriers (P = 
0.03), and CHEK2 DV and VUS carriers (P = 0.01 and 0.048, 
respectively) (Fig. 5a).

Separately analysis was performed for breast cancer pa-
tients. Median age for breast cancer patients with any germline 
variants was 48 years. A statistically significant difference was 
observed between the ages of any DV variant carriers affected 
with breast cancer and wild type breast cancer patients (me-
dian, 49 vs. 52 years, P = 0.018), as well as between VUS 
carriers and wild type breast cancer patients (median, 44.5 vs. 
52 years, P = 0.0001). Median age of breast cancer patients 
harboring DV were as follows: 44 years for BRCA1, 54 years 
for BRCA2, 45 years for ATM, 44 years for CHEK2, and 60 
years for other HRR genes. Median age for breast cancer car-
riers of VUS was 48 years for BRCA1, 51 for BRCA2, 37 
for ATM, 38 for other HRR genes, including a single CHEK2 
VUS carrier, who was 41 years old at the time of testing. In the 

breast cancer patient population, statistically significant differ-
ences were observed between the ages of carriers of BRCA1 
DV and ATM VUS when compared to wild type patients (P = 
7 × 10-5 and 0.014, respectively). Additionally, a statistically 
significant difference was observed when comparing BRCA1 
and BRCA2 DV carriers (P = 0.004), as well as carriers of 
VUS in HRR genes other than BRCA1/2, ATM, CHEK2 (P = 
0.0067). Finally, a statistically significant interaction was ob-
served between ATM VUS and HRR VUS variant carriers in 
non-BRCA1/2/ATM/CHEK2 genes (P = 0.033) (Fig. 5b).

A total of 11 patients carried more than a single germline 
DV. Of those, three patients had double DV in BRCA1/2 genes 
(two patients had DV in BRCA1 and BRCA2, one patient had 
two DVs in BRCA2). Three patients harbored concurrent 
BRCA1/2 and ATM variants (two patients had DV in BRCA2 
and ATM, one in BRCA1 and ATM). Two patients harbored 
DV in BRCA1/2 along with CHEK2. Finally, a single patient 
had concurrent ATM and CHEK2 DV and a single patient har-
bored two distinct ATM variants, while another patient had 
double CHEK2 variants. Furthermore, in addition to DV, 27 
patients harbored concurrent VUS variants (one patient had 
two VUS variants, others had one). Additionally, among those 
who did not have any DV, 15 patients were found to carry more 
than a single VUS (two patients had three VUS, others had 
two). Median age of patients with concurrent germline DV in 
any of the HRR genes was 52 years. Patients harboring more 
than a single VUS in any of the analyzed genes had a me-
dian age of 61 years, whereas patients with concurrent DV and 
VUS tended to be younger, with a median age of 45 years. 
No statistically significant differences were observed between 
ages of patients with concurrent mutations.

Figure 5. Distribution of germline variants (DV, VUS) by age groups across (a) all patients tested, (b) patients with breast can-
cer. Data on the age of patients without any identified variants (wild type patients) are presented for reference. VUS: variants of 
uncertain significance; DV: deleterious variants.
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In silico analysis to assess VUS variants

We employed seven in silico tools to predict the effect of iden-
tified DV and VUS missense variants, namely, MetaLR [76], 
VEST [77], CADD [78], FathmmMKL coding [79], Mutation-
Taster [80], SIFT [81] and PROVEAN [82]. Average concord-
ance of prediction results between two tools was 0.69 (range 
0.48 - 0.90) with VEST demonstrating highest average con-
cordance with other tools (0.74), whilst MetaLR had the low-
est (0.61) (Fig. 6b). CADD, FathmmMKL, MutationTaster and 
VEST correctly predicted deleterious effect of all BRCA and 
non-BRCA DVs (Fig. 6c). In line with previous studies [83-
86] demonstrating a probability of 95% and higher of patho-
genic classification [68] for mutations consistently predicted 
deleterious by multiple lines of computational tools, all BRCA 
and non-BRCA missense DVs were predicted to have delete-
rious effect by six or seven in silico predictors (Fig. 6a). Ad-
ditionally, 13 BRCA and 39 non-BRCA variants classified as 
VUS within the general interpretation process (in “Materials 
and Methods” section) were predicted to have deleterious ef-
fects by six or seven in silico predictors. This comprised a total 
of 52 potentially missed DVs identified in 55 patients (19 - 
breast cancer patients; eight - ovarian cancer; five - pancreatic 
cancer; four - prostate cancer) with no other variant classified 
as DV within the general interpretation process in any gene.

Discussion

Our study represents one of the first reports about the inci-
dence of DV and VUS variants in HRR genes identified in 

breast, ovarian, pancreatic and prostate cancer patients from 
Russia, assessed by NGS. Across 2,032 patients tested, 24% 
harbored HRR gene variants, of which BRCA1/2 variants 
(16.4%) were the most common, followed by ATM (3%) and 
CHEK2 (1.7%) variants. The incidence of HRR gene variants 
is reported to be high among patients with HOBC type of can-
cer; however, it can vary significantly among different coun-
tries or some ethnic groups due to the founder effect [87]. Our 
results are in line with those previously published. Frequency 
of BRCA1/2 pathogenic variants is similar with previously re-
ported for breast cancer patients from Eastern Sicily [88] or 
Poland and Ukraine [89] (9% vs. 15.1% vs. 14% in our study), 
and correlates well with reported for ovarian cancer patients 
from Brazil [90] or Poland and Ukraine [89] (20.8% vs. 23.8% 
vs. 20.4% in our study). However, in non-BRCA1/2-mutated 
breast cancer Hispanic Americans [91], the frequency of other 
HRR pathogenic variants is practically the same (4.5% vs. 
3.9% in our study) and rare incidence of PALB2 pathogenic 
variants coincides with reported for breast and ovarian cancer 
patients from Poland (1.5% vs. 0.2%) [92]. A high frequency 
of BRCA1 VUS or pathogenic variants has previously been 
reported in the Russian population of patients with breast can-
cer, and the results are consistent with those obtained in our 
study (7.4% vs. 9%) [93]. Observed frequency of pathogenic 
CHEK2 germline variants (1.5%) is close to the known for the 
Baltic (4%) and Finnish (3.7%) populations of breast cancer 
patients [94, 95], as well as in worldwide data (1.4%) [25].

In 2020, American Society of Clinical Oncology (ASCO) 
recommended that all women diagnosed with epithelial ovar-
ian cancer should have germline testing for BRCA1/2 and 
other ovarian cancer susceptibility genes followed by tumor 
testing for patients who do not carry a germline pathogenic or 

Figure 6. Results of in silico prediction of identified missense variants effect. (a) Distribution of observed VUS and DV by count 
of in silico tools predicting deleterious effect. (b) Pairwise concordance of in silico prediction algorithms demonstrated on variants 
identified in study. (c) Per-tool prediction results for BRCA/non-BRCA and VUS/DV. VUS: variants of uncertain significance; DV: 
deleterious variants.
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likely pathogenic variant [96]. Further studies in contradiction 
demonstrated higher cost-efficiency of tumor testing triage for 
germline testing strategy for patients with epithelial ovarian can-
cer [97]. For patients with prostate cancer, parallel germline and 
somatic testing is recommended for patients who may benefit 
from PARP inhibitors [98]. The same ambiguity of testing strat-
egies comes to the fore for breast cancer patients as the latest 
NCCN guidelines recommend somatic BRCA testing as useful 
in certain circumstances, though, PARP inhibitors are currently 
not FDA approved as treatment for these mutations [99]. Moreo-
ver, some breast cancer patients would require tumor testing for 
ESR1, HER2 and PIK3CA mutations proposing usage of larger 
panels including BRCA genes to exclude the need of additional 
testing in future. Overall, this demonstrates high uncertainty of 
optimal germline and tumor testing sequencing for patients who 
both may benefit from targeted therapy and may require to rule 
out heredity of disease. Our study included real-world data of 
both germline and somatic testing employing both BRCA1/2/
ATM/CHEK2 genes panel and broad HRR genes panel. HRR 
genes testing has almost the same efficiency within germline 
and somatic testing frameworks and resulted in 16% and 17% 
of HRR-mutation positive cases, respectively (P-value = 0.19). 
The same percentage of positive cases was seen in a total study 
population including cases when tested material was not report-
ed. BRCA1/2/ATM/CHEK2 genes testing resulted in contrast-
ing efficiency with 24%, 13% and 18% of positive cases for 
somatic testing, germline testing and for total study population, 
respectively. What’s more important, across 51 DV mutations 
identified in 242 FFPE samples tested, further testing for variant 
origin clarification was required only in a single case (0.4%), 
whilst other 50 variants could be identified as somatic or ger-
mline with high confidence based solely on FFPE sequencing 
data (in “Materials and Methods” section). Overall, this demon-
strates high efficiency of the tumor testing triage for germline 
testing strategy.

In our study, BRCA1/2 variants were the most common 
across observed germline DVs (80.5% across all patients and 
71.5% across patients tested for broad HRR panel). Patients 
with prostate and pancreatic cancer were characterized by 
higher prevalence of somatic mutation, higher prevalence of 
BRCA2 germline DVs compared to BRCA1 germline DV 
and higher prevalence of non-BRCA germline DVs. This dif-
ference in mutation frequencies can be attributed to the phe-
notype variability of hereditary cancer syndromes associated 
with defects in HR [100, 101], as well as heterogeneity of the 
analyzed patient population and differences in panels used. 
When analyzing patients with available age, breast cancer pa-
tients harboring germline variants in any of the genes were 
younger, and this difference was statistically significant. The 
peak incidence of breast cancer in BRCA1/2 DV carriers was 
between 41 and 60 years at the time of testing, consistent with 
currently available evidence [5, 102].

The majority of BRCA1/2 germline variants identified 
in our patient cohort were DV, while for the non-BRCA1/2 
genes, the opposite dynamic was observed, with more VUS 
being identified (Fig. 3a-c). Several recurrent variants were 
observed, both in BRCA1/2 and non-BRCA1/2 genes (Fig. 3d, 
e). Of those, 17 (48.6%) BRCA1/2 and four (18.2%) non-BR-
CA1/2 variants have been previously described as founder mu-

tations, commonly observed in Eastern European, European, 
Russian, or other ethnically similar populations [87, 103-114]. 
When comparing our results with standard BRCA1/2 PCR as-
says, only 42.6% of patients who were found to harbor DV in 
either BRCA1, or BRCA2 in our study, could be identified as 
BRCA1/2-positive via PCR panels routinely employed in clin-
ical practice in Russia. Early studies concluded that up to 90% 
of all BRCA1/2 mutations found in the Russian Slavic popula-
tion are represented by common founder variants, thus, PCR 
may be an efficient method for BRCA mutation analysis [115]. 
Nevertheless, recent studies indicated the need of full-length 
BRCA1/2 sequencing [59] which is consistent with our data. 
Additionally, several VUS were identified more than once, 
predominantly in non-BRCA1/2 genes (68.2% VUS among 
non-BRCA1/2 genes vs. 5.6% VUS in BRCA1/2). This differ-
ence can be attributed to the colossal efforts toward BRCA1/2 
variant classification that have resulted in clarification of clini-
cal significance of a number of variants, including missense 
variants, and accumulation of data in specific knowledge bases 
[116-119]. At the same time, the clinical significance of vari-
ants occurring in other HRR genes is less widely studied, pos-
sibly due to the rarity of these events and the fact that testing 
for non-BRCA1/2 variants has been a relatively recent addi-
tion to the clinical practice [120, 121].

Studies show that therapeutic benefit of PARP inhibitors 
is not limited to DV in BRCA1/2 genes, as alterations in other 
genes and transcriptomic signatures have been linked to this 
drug class [41, 122-126]. Therefore, identification of DV in 
HRR genes is of utmost importance for therapeutic manage-
ment of breast, ovarian, pancreatic and prostate cancers. The 
clarification of clinical significance of non-BRCA1/2 HRR 
gene variants is crucial for selecting patients who would po-
tentially benefit from PARP inhibitor therapy. Since several 
non-BRCA1/2 variants were identified more than once in our 
study, it might be possible that a fraction of patients who in fact 
are candidates for PARP inhibitor therapy, fail to receive it.

Acute shortage of literature data for variant interpretation 
comes to the fore as broad HRR gene panels are introduced into 
clinical practice. First of all, in contrast to variants observed in 
BRCA1/2, missense variants are more common in non-BRCA 
HRR genes rather than null variants (including variants result-
ing in premature translation termination and canonical splice 
site variants). Considering that variants with population fre-
quency of 0.3% and higher are defined as neutral, a total of 550 
variants required interpretation in our study. This included 343 
variants located in BRCA1/2 and 207 located in HRR genes 
other than BRCA1/2. Among BRCA1/2 variants, 272 (79%) 
were null variants and, thus, did not require exhaustive litera-
ture search for variant interpretation, while only 128 (47%) 
variants in non-BRCA HRR genes were null variants. Con-
sequently, this resulted in higher incidence of VUS variants 
identified in non-BRCA HRR genes (13.7 and 2.4 VUS vari-
ants identified per each 100 patients in non-BRCA and BRCA 
genes, respectively). Employing in silico prediction tools, we 
identified 13 BRCA1/2 and 39 non-BRCA VUS variants with 
high (95% and more) probability of deleterious effect due to 
concordant prediction by multiple lines of computation tools, 
which, however, cannot be interpreted as DV due to lack of 
functional or case-control studies described in literature. This 
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potentially may result in 50 patients tested employing a broad 
HRR gene panel missing their positive result due to lack of 
data available for variant interpretation, accounting for addi-
tional 4.9% potentially positive patients in addition to 16.5% 
patients with DV. In contrast, across patients tested employing 
BRCA1/2/ATM/CHEK2 panel, these calculations result only 
in 1.2% potentially positive patients in addition to 18.8% pa-
tients with DV. Further sequencing efforts may reduce this gap 
in BRCA vs. non-BRCA variant annotation in literature.

Taken together, our results highlight the need for continu-
ous research aiming at evaluation of clinical significance of 
non-BRCA1/2 VUS. Furthermore, our results highlight the 
need for using NGS as a method of choice for BRCA1/2 ger-
mline variant detection, especially in PCR-negative patients. 
Expanding testing beyond BRCA1/2 variants might be reason-
able, especially for BRCA1/2 wild type patients. Finally, we 
demonstrate that our laboratory-developed panels can be effi-
ciently used for the mutational analysis of BRCA1/2 and other 
HRR genes in patients with various cancer types.

The primary limitation of our study is that the complete data 
on patients’ sex, age and tumor type were only available for a 
fraction of patients, and information on family history of can-
cer was available for none of the patients. Additionally, partly 
due to the fact that a large number of laboratories were involved 
in the testing, no follow-up information was available for any 
of the patients, making it impossible to make any conclusions 
on how the testing had influenced that patients’ lives. Further-
more, since only a fraction of patients were tested for variants 
in non-BRCA1/2/ATM/CHEK2 genes, the incidence of variants 
in other HRR genes was tested in a smaller patient population.

In conclusion, our study demonstrates frequencies of 
BRCA1/2 and other HRR gene variants and explores the re-
lationship between variant carriers and various patient charac-
teristics in a large real-world unselected cancer patient cohort. 
We describe potential founder variants that were observed not 
only in BRCA1/2, but also in other HRR genes when tested 
with our own laboratory-developed panels. Finally, our study 
highlights the significant advantages of NGS in comparison 
with PCR for HRR variant detection.
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