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Abstract

Background: Ferroptosis is a novel form of regulated cell death that 
involves in cancer progression. However, the role of ferroptosis-re-
lated long non-coding RNAs (lncRNAs) in papillary thyroid cancer 
(PTC) remains to be elucidated. The purpose of this paper was to 
clarify the prognostic value of ferroptosis-related lncRNAs in PTC.

Methods: The transcriptome data and clinical information were 
downloaded from The Cancer Genome Atlas (TCGA) database. The 
correlation between ferroptosis-related genes (FRGs) and lncRNA 
was determined using Pearson correlation analysis. Multivariate Cox 
regression model (P < 0.01) was performed to establish a ferroptosis-
related lncRNAs risk model. Kaplan-Meier survival analysis, receiv-
er operating characteristic (ROC) curves, risk curve and nomograms 
were then performed to assess the accuracy and clinical applicabil-
ity of prognostic models. The correlations between the prognosis 
model and clinicopathological variables, immune and m6A were 
analyzed. Finally, in vitro assays were performed to verify the role of 
LINC00900, LINC01614 and PARAL1 on the proliferation, migra-
tion and invasion in TPC-1 and BCPAP cells, as well as the relation-

ship between three lncRNAs and ferroptosis.

Results: A five-ferroptosis-related lncRNAs (PARAL1, LINC00900, 
DPH6-DT, LINC01614, LPP-AS2) risk model was constructed. 
Based on the risk score, samples were divided into the high- and low-
risk groups. Patients in the low-risk group had better prognosis than 
those in high-risk group. Compared to traditional clinicopathologi-
cal features, risk score was more accurate in predicting prognosis in 
patients with PTC. Additionally, the difference of immune cell, func-
tion and checkpoints was observed between two groups. Moreover, 
experiments showed that LINC00900 promoted the proliferation, mi-
gration and invasion in TPC-1 and BCPAP cells, while LINC01614 
and PARAL1 revealed opposite effects, all of which were related to 
ferroptosis.

Conclusions: In summary, we identified a five-ferroptosis-related 
lncRNAs risk model to predict the prognosis of PTC. Furthermore, our 
study also revealed that LINC00900 functioned as a tumor suppressor 
lncRNA, LINC01614 and PARAL1 as an oncogenic lncRNA in PTC.

Keywords: Ferroptosis; Prognostic model; lncRNA; LINC00900; 
LINC01614; PARAL1; Papillary thyroid cancer

Introduction

As the most common endocrine malignancy, thyroid cancer 
accounts for 3.4% of all tumors diagnosed each year [1]. Most 
thyroid cancers originate from thyroid follicular cells, includ-
ing anaplastic thyroid cancer (ATC), poorly differentiated thy-
roid cancer (PDTC) and differentiated thyroid cancer (DTC), 
which is further divided into papillary thyroid cancer (PTC) 
and follicular thyroid cancer (FTC). In addition, there is also 
medullary thyroid cancer (MTC) derived from parafollicular 
cells [2]. PTC is the most common histological subtype of thy-
roid cancer, accounting for 90% of the total cases. Even though 
PTC shows low malignancy and invasiveness, recurrence and 
metastasis restrict the therapeutic effects [3].

Ferroptosis is an iron-dependent, regulated cell death trig-
gered by lipid peroxidation [4, 5]. Inactivation of cellular an-
tioxidant system, especially the cystine/glutamate antiporter 
(xc

-)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis 
is a significant cause of ferroptosis [6, 7]. A major target of 
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lipid peroxidation is polyunsaturated fatty acids (PUFAs), the 
incorporation of which into phospholipids requires acyl-CoA 
synthetase long-chain family member 4 (ACSL4) [4]. Previ-
ous studies have indicated that ferroptosis is involved in multi-
ple tumor progression, such as ovarian cancer [8, 9], renal cell 
cancer [6], pancreatic ductal adenocarcinoma (PDAC) [10] 
and glioblastoma [11]. In addition, ferroptosis is divided into 
several parts in regulating thyroid cancer, including activation 
of iron-containing enzymes by excess iron, lipid peroxidation 
in PUFAs, and defense disorder of an antioxidant system [12].

Long non-coding RNAs (lncRNAs) refer to non-coding 
RNAs with a length greater than 200 nucleotides [13], which can 
interfere gene expression at the transcriptional or post-transcrip-
tional levels [14]. Several studies have reported lncRNAs in-
volve in progression of breast cancer [15], hepatocellular cancer 
[16] and ovarian cancer [17], et al. A previous study suggested 
lncRNA Xist acts as competing endogenous RNA (ceRNA) to 
promote cell proliferation and tumor growth by sponging miR-
34a in thyroid cancer [18]. Furthermore, lncRNA CERS6-AS1 
enhanced cell viability and suppressed ferroptosis of PTC [19].

In this study, a model based on ferroptosis-associated dif-
ferentially expressed lncRNAs was established for estimation 
of prognosis and for prediction of optimal therapy options.

Materials and Methods

Data acquisition and processing

The transcriptome data and clinical information of 567 samples 
were downloaded from The Cancer Genome Atlas (TCGA) da-
tabase using R software. After excluding other types of thyroid 
cancer, 502 cases of PTC and 58 normal samples were retained 
for analyses, and then we convert Ensemble ID into gene sym-
bol to distinguish mRNA and lncRNA. The clinical informa-
tion, including gender, age, pathological stage, survival status 
and survival time were extracted.

TCGA is a public database, so no ethical approval is re-
quired. The study was conducted in compliance with the ethi-
cal standards of the responsible institution on human subjects 
as well as with the Helsinki Declaration.

Identification of ferroptosis-related lncRNAs

Two hundred fifty-nine ferroptosis-related genes (FRGs) were 
obtained from the FerrDb database [20]. The expression levels 
of FRGs were extracted. Pearson correlation analysis was used 
to detect the correlation between FRGs and lncRNA, and the 
correlation coefficient |R2| > 0.4 and P < 0.01 was considered 
the screening criteria. The expression levels of FRGs-related 
lncRNAs were extracted. To find out differentially expressed 
FRGs and FRGs-related lncRNAs in tumor samples and nor-
mal samples, the Wilcoxon rank-sum test was performed with 
screening criteria of false discovery rate (FDR) < 0.05 and 
|log2FC| ≥ 1. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses were conducted to 
explore the potential biological functions of ferroptosis-related 

differentially expressed genes (DEGs) (P < 0.05) with the R 
package clusterProfiler.

Construction and evaluation of prognostic signatures

To determine ferroptosis-related lncRNAs associated with 
the prognosis of PTC, univariate Cox regression and multi-
variate Cox regression model (P < 0.01) were performed. The 
risk score for each patient was calculated using the following 
formula: Risk Score = ∑(Coefi*Exi), and the patients were di-
vided into high- and low-risk groups based on the median of 
risk score. Kaplan-Meier survival analysis, receiver operating 
characteristic (ROC) curves (R package “survival ROC”), risk 
curve and nomograms were then used to assess the accuracy 
and clinical applicability of prognostic models. Coexpression 
network was constructed using the STRING database and vis-
ualized by Cytoscape.

Immune analysis between high- and low-risk groups

“Limma” and “pheatmap” R package were used to identify 
the distribution of immune cells in high- and low-risk groups 
with various database including TIMER, CIBERSORT, CIB-
ERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL and 
EPIC. Immune function scores were determined using the R 
package “limma”, “GSVA”, “GSEABase”, “ggpubr” and “re-
shape2”. Immune checkpoint genes were obtained with the R 
package “limma”, “ggplot2” and “ggpubr”.

Cell culture and transfection

Human PTC cell lines TPC-1 (Procell Life Science&Technology 
Co., Ltd.) and BCPAP (Shanghai Zhong Qiao Xin Zhou Bio-
technology Co., Ltd.) were cultured in RPMI-1640 (Gibco, 
USA) supplemented with 10% fetal bovine serum (FBS, Gib-
co, USA) and 1% penicillin/streptomycin and incubated at 37 
°C with 5% CO2.

The transfection was performed with Lipo3000 transfec-
tion reagent (Invitrogen, USA).

siRNAs against LINC00900, LINC01614 and PARAL1 
(si-LINC00900, si-LINC01614 and si-PARAL1) and the neg-
ative control (si-NC) were synthesized by GenePharma Co. 
Ltd. (Shanghai, China). The sense sequences are as follows: 
si-LINC00900: 5'-GGUCCAAGGUUGUUAUUUATT-3'; si- 
LINC01614: 5'-GCUGGAAGCAUUUCGUAAUTT-3'; si-PA 
RAL1: 5'-GUCAUCUACACAUGAAUAATT-3'; siNC: 5'- UU 
CUCCGAACGUGUCACGUTT -3'.

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted by RNAiso plus (Takara, China) and 
subsequently reverse transcribed into cDNA with reverse tran-
scription kit (Tiangen, China). Finally, TB Green Premix Ex Taq 
(Takara, China) was used to amplify cDNA with CFX96 Real-
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Time PCR Detection System (Bio-Rad, USA). The expression 
level was calculated by 2-ΔΔCt method, and β-actin was used as a 
negative control. Primer sequences were shown in Table 1.

EdU assay

Cell proliferation was detected by EdU assay kit (RiboBio, 
China). The cells were seeded in 96-well plates after transfec-
tion. EdU solution (reagent A) was diluted at a ratio of 1,000:1, 
and cells were incubated with diluted reagent A for 2 h at 37 
°C after adherence. Add 50 µL 4% paraformaldehyde to each 
well and incubate at room temperature for 30 min after dis-
carding reagent A, and then 50 µL 2 mg/mL glycine was used 
for neutralization. After washing with phosphate-buffered sa-
line (PBS), the cells were incubated with 100 µL 1 × Apollo 
staining reaction solution and then 1 × Hoechst 33342 reaction 
solution for 30 min away from light, respectively. Finally, im-
ages were captured with the fluorescence microscope (Olym-
pus, Japan).

Migration and invasion assay

The cells were digested after transfection and suspended with 
complete medium. Then the cell suspension was transferred 
into a chamber. Basal medium (600 µL) was added to the 
lower chamber. The cells were incubated overnight at 37 °C 
and then fixed in 4% paraformaldehyde for 20 min and stained 
with crystal violet for 30 min. After wiping out the cells on the 
upper cells of the chamber, the cells were photographed with 
the fluorescence microscope (Olympus, Japan).

Clone formation assay

The cells were seeded into six-well plates (1,000 cells/well) 
after transfection. Following incubating for 7 days, the cells 
were fixed with 4% paraformaldehyde and then stained with 
crystal violet for 30 min. Images were taken to record the num-
ber of clones.

Determination of Fe2+ levels

The content of Fe2+ was determined with Ferrous ion Assay 

Kit (Elabscience, China). The cells were collected and added 
with buffer solution (0.4 mL/4 × 106 cells), then fragmented 
by sonication. The supernatant was extracted following cen-
trifuging at 10,000 × g for 10 min. Add 300 µL of standards 
and samples to 1.5 mL EP tubes, respectively. Subsequently, 
chromogenic solution was added, mixed well, and incubated 
at 37 °C for 10 min. After centrifugation at 12,000 × g for 15 
min, the supernatant was taken and added into microplate. The 
optical density (OD) values at 593 nm were measured with a 
microplate reader (iMark microplate reader; Bio-Rad).

Western blot

Total proteins were extracted with RIPA lysis buffer supple-
mented with protease inhibitors (Biyuntian, China). The pro-
tein concentration was measured with BCA kit (Biyuntian, 
China). Sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) gels (10%) were used to separate pro-
teins, which was then transferred to polyvinylidene fluoride 
(PVDF) membranes, blocked and incubated overnight with 
antibodies against ACSL4 (1:1,000; ab155282, Abcam) and 
GPX4 (1:1,000; ab125066, Abcam). After washed with Tris-
buffered saline with Tween 20 (TBST), the membranes were 
incubated with secondary antibody (anti-rabbit, 1:10,000) for 
1 h at room temperature. Finally, Enhanced chemilumines-
cence reagent (Millipore, USA) was used to detect chemilumi-
nescence. β-actin (1:1,000; TA-09, Zhongshan Golden Bridge) 
was used as the control.

Statistical analysis

R software package (version 4.1.2) and GraphPad Prism (ver-
sion 8.0.1) were applied for statistical analyses and visuali-
zation. The Wilcoxon rank-sum test was used to analyze the 
expression levels of FRGs and FRGs-related lncRNAs in tu-
mor samples and normal samples. Univariate Cox regression 
analysis was performed to establish the relationship between 
ferroptosis-related lncRNAs and overall survival (OS), and 
multivariate Cox analysis was performed to construct a prog-
nostic signature.

To compare the OS of high- and low-risk patients, the Ka-
plan-Meier survival analysis and log-rank test were applied. 
The “urvivalROC” package was used to determine area under 
the curve (AUC) values and construct ROC curves.

Table 1.  The sequence of Primers

Gene Forward (5′ - 3′) Reverse (5′ - 3′)
PARAL1 TTGAGATGTCGAGAGCGAGC CTTGGGCTGTGCTGAGACTA
LINC00900 ATTCGCTCCTCATAGGGACAA GCTGGGATTAGATGCAGTTCG
DPH6-DT TTGTGAAGGTATGGGCTTGG GGGATGCCATTCTTCAAACC
LINC01614 TCAGCACTTCGCTCCAAAGG AGATTCTCCGTGTCTGAAGTCC
LPP-AS2 AACCACCCATTCCACAGACTA CTCCAAGAGCCCGTATCTC
β-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
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Results

Enrichment analysis of ferroptosis-related DEGs

A total of 29 ferroptosis-related DEGs were identified, 19 of 
which were upregulated and 10 of which were downregulated. 
GO and KEGG analyses were carried out. GO analysis revealed 
that ferroptosis-related DEGs were enriched in: 1) biological 
process (BP): response to oxidative stress, unsaturated fatty 
acid metabolic process, lipoxygenase pathway, etc.; 2) cellu-
lar component (CC): lamellipodium membrane, apical plasma 
membrane, apical part of cell, etc.; 3) molecular function (MF): 
oxidoreductase activity, acting on single donors with incorpora-
tion of molecular oxygen, iron ion binding, oxidoreductase ac-
tivity, acting on single donors with incorporation of molecular 
oxygen, incorporation of two atoms of oxygen, etc. (Supplemen-
tary Material 1, www.wjon.org). KEGG analysis results showed 
that ferroptosis-related DEGs were mainly enriched in pathways 
related to AGE-RAGE signaling pathway in diabetic complica-
tions, serotonergic synapse, arachidonic acid metabolism, central 
carbon metabolism in cancer, hepatitis B, Epstein-Barr virus in-
fection, hematopoietic cell lineage, Chagas disease, human T-cell 
leukemia virus 1 infection, Th17 cell differentiation, and African 
trypanosomiasis (Supplementary Material 1, www.wjon.org).

Establishment and validation of prognostic model based 
on ferroptosis-related lncRNA

The clinical data were combined with lncRNA expression data 
downloaded from TCGA. Figure 1a showed that how the five-
gene signature of ferroptosis-related lncRNAs were identified. 
Univariate Cox proportional hazards regression analysis re-
vealed that 16 lncRNAs were related to the prognosis of PTC. 
Fourteen lncRNAs with hazard ratio (HR) > 1 were defined as 
high risk, whereas two lncRNAs with HR < 1 were defined as 
low risk (Fig. 1b). Next, multivariate Cox proportional hazards 
regression analysis demonstrated five lncRNAs (PARAL1, 
LINC00900, DPH6-DT, LINC01614, LPP-AS2) as independ-
ent prognosis biomarkers (Fig. 1c). PARAL1, DPH6-DT, 
LINC01614, LPP-AS2 were risk factors, while LINC00900 
was protective factors. Each gene expression associated with 
OS from TCGA data was analyzed, and only high expressed 
LINC00900 showed a significant survival benefit (Supple-
mentary Material 2, www.wjon.org). The risk score of each 
sample was calculated as follows: (0.777302160104907) × 
PARAL1 expression + (-2.39733075460453) × LINC00900 
expression + (3.00676211793275) × DPH6-DT expres-
sion + (0.108382333939635) × LINC01614 expression + 
(1.85457176547278) × LPP-AS2 expression.

Based on the median value of risk score, we divided PTC 

Figure 1. Determination of ferroptosis-related five-lncRNAs prognostic model. (a) The flowchart of how the five gene signature 
of ferroptosis-related lncRNAs were identified. (b) Univariate Cox regression analysis. (c) Multivariate Cox regression analysis. 
lncRNA: long non-coding RNA; TCGA: The Cancer Genome Atlas.
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patients into two group: low-risk and high-risk. As shown 
here (Supplementary Material 3, www.wjon.org), there was an 
increasing number of deaths with the risk scores rising. The 
heat map was generated to illustrate the expression of the five 
ferroptosis-related lncRNAs in high- and low-risk groups (Fig. 
2a). The Kaplan-Meier survival curves showed that patients in 
the high-risk group exhibited a worse prognosis than that in the 

low-risk group (Fig. 2b).

Risk score can be used as an independent risk factor for 
PTC prognostic prediction

The effect of ferroptosis-related five-lncRNA model for predict-

Figure 2. Establishment and validation of prognostic model based on ferroptosis-related lncRNA. (a) Heat map illustrating the 
expression of the five ferroptosis-related lncRNAs in high- and low-risk groups. (b) Kaplan-Meier survival curves comparing the 
overall survival of patients in high- and low-risk groups. lncRNA: long non-coding RNA.
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ing the prognosis of PTC was further evaluated. Firstly, uni-
variate Cox regression analysis results showed that age, stage, 
T stage, M stage and risk score were associated with the OS 
of PTC patients (Fig. 3a). Multivariate Cox regression analysis 
exhibited that age and risk score were independent predictors of 
OS of PTC patients (Fig. 3b). The AUC value of risk score was 
0.998, which was higher than that of other factors (Fig. 3c), sug-
gesting that risk score had a better prediction ability. AUC val-
ues for 1-, 2-, and 3-year survival were 0.748, 0.709, and 0.686, 
respectively (Fig. 3d). A nomogram integrating clinicopatholog-
ical variables and the risk score was established for predicting 
1-, 3- and 5-year survival rate of PTC patients (Fig. 3e).

Construction of coexpression network of the ferroptosis-
related five lncRNAs and mRNA

The coexpression network containing 29 lncRNA-mRNA 
pairs was constructed. LPP-AS2 had a close relationship 
with GLS2, BID, DPP4, ACVR1B, MIOX, DNAJB6, VEGFA, 
ACSF2, RIPK1, FADS2 and NFS1. DPH6-DT had coexpres-
sive relationship with ALOX15B, SNX4, BID, PEBP1, MAPK8, 
VLDLR, ACSF2 and NFS1. LINC00900 was coexpressed with 
four genes (DUOX1, DUOX2, MAPK14, CD44). LINC01614 
was coexpressed with three genes (NOX4, NCF2, NNMT), and 
PARAL1 was coexpressed with three genes (NCF2, ALOX5, 
SCD) (Supplementary Material 4, www.wjon.org).

Heat map visualized five ferroptosis-related lncRNAs and 
clinicopathological variables between high- and low-risk 
groups

The heat map indicated that LPP-AS2, DPH6-DT, LINC01614 
and PARAL1 were highly expressed in the high-risk group, and 
LINC00900 was upregulated in the low-risk group. Among clin-
icopathological variables, there were significant differences in 
T stage and age between high-risk and low-risk groups (Fig. 4).

Correlation analysis of risk score with immunity and m6A

Tumor immune microenvironment and m6A-related genes 
contribute significantly to tumor progression [21-23]. There-
fore, to identify whether tumor immune microenvironment 
and m6A-related genes were different between high- and low-
risk groups, we performed the correlation analysis of risk score 
with immunity and m6A. Differentially infiltrated immune 
cells were analyzed, and significant differences between the 
two groups were indicated (Fig. 5a). We then explore the differ-
ence in immune function between high- and low-risk groups. 
Antigen-presenting cell (APC) co-inhibition, APC co-stimula-
tion, chemokine receptor (CCR), checkpoint, human leukocyte 
antigen (HLA), inflammation-promoting, parainflammation, T 
cell co-inhibition and type I interferon (IFN) response were 
significantly different (Fig. 5b). In addition, we also examined 
immune checkpoints between the two groups, and 27 genes 
showed significant differences, of which 18 were upregulated 

in high-risk group. The above results could provide an idea 
for antitumor immunotherapy (Fig. 5c). The expression of 
m6A-related genes was detected. Among the 12 genes, five 
(METTL14, HNRNPC, METTL3, WTAP, YTHDC1) were dif-
ferentially expressed and all of which were downregulated in 
high-risk group compared with low-risk group (Fig. 6).

LINC00900 inhibited proliferation, migration and inva-
sion, while LINC01614 and PARAL1 had the opposite 
effects

The expression of five ferroptosis-related lncRNAs was ex-
amined, PARAL1, LINC00900 and LINC01614 were highly 
expressed in TPC-1 and BCPAP cells compared with Nthy-ori 
3-1 cells (Fig. 7a, b, and d). In contrast, DPH6-DT, LPP-AS2 
were poorly expressed (Fig. 7c, e). We then examined the role 
of three highly expressed lncRNAs in tumor progression. The 
expression of PARAL1, LINC00900 and LINC01614 were 
successfully interfered after transfected with siRNA, respec-
tively (Fig. 8a, b). The results of EdU indicated that cell prolif-
eration was increased following LINC00900 knockdown and 
decreased after downregulation of LINC01614 and PARAL1 
(Fig. 8c, d). Transwell results also showed that cell migration 
and invasion enhanced after silencing LINC00900 expression, 
while inhibition of LINC01614 and PARAL1 suppressed cell 
migration and invasion (Fig. 8e, f). The same was true for 
clone formation assay results (Fig. 8g, h).

LINC00900, LINC01614 and PARAL1 were involved in 
ferroptosis

Given that these five lncRNAs are ferroptosis-related lncR-
NAs, content of Fe2+ was determined by enzyme-linked im-
munosorbent assay (ELISA). The results showed that the con-
tent of Fe2+ decreased after downregulation of LINC00900 
but increased after inhibiting the expression of PARAL1 and 
LINC01614 (Fig. 9a, b). The expression of ACSL4 and GPX4 
protein was subsequently detected. LINC00900 knockdown 
reduced the expression of ACSL4, accompanied by GPX4 ex-
pression increased. Interfering with PARAL1 and LINC01614 
exhibited reverse outcomes (Fig. 9c, d).

Discussion

In current research, ferroptosis appears to play an important 
role in cancer progression. Ferroptosis-related lncRNAs for 
predicting prognosis have been reported in many cancers [24, 
25]. However, ferroptosis-related lncRNAs prognostic model 
for PTC remains to be elucidated.

First, a total of 29 ferroptosis-related DEGs were obtained. 
Among enriched KEGG pathways, arachidonic acid biosyn-
thesis pathway plays an essential role in ferroptosis in gastric 
cancer cells [26]. Central carbon metabolism includes glycoly-
sis, the pentose phosphate pathway, and the tricarboxylic acid 
cycle [27]. α-enolase 1 (ENO1), a critical glycolytic enzyme, 
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Figure 3. Prognostic value of ferroptosis-associated lncRNA model. (a) Forest plot for univariate cox regression analysis. (b) 
Forest plot for multivariate Cox regression analysis. (c) ROC curve for the risk score and clinicopathological variables. (d) ROC 
curve of the risk score at 1, 3, and 5 years. (e) Nomogram based on risk score and clinicopathological variables for predicting 1-, 
3-, and 5-year survival rates. lncRNA: long non-coding RNA; ROC: receiver operating characteristic.
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inhibits cancer cell ferroptosis through degrading the mRNA 
of iron regulatory protein 1 [28].

Recent studies have indicated ferroptosis-related lncRNAs 
for predicting the prognosis of hepatocellular cancer, bladder 
cancer and renal cell carcinoma [29-31]. In addition, the prog-
nosis of PTC patients has also been predicted with lncRNA-
associated signatures. Genomic instability-related lncRNA 
signature has been developed to predict the prognosis of PTC 
[32]. A nine-autophagy-related lncRNA prognostic risk model 
was established for thyroid cancer [33]. Recent study indicated 
that the ferroptosis-related lncRNA pairs model showed good 
predictive value for the prognosis of patients with PTC [34]. 
We identified five ferroptosis-related lncRNAs by multivari-
ate Cox proportional hazards regression analysis, several of 
which have been confirmed in previous studies. A recent study 
suggested that knockdown of DPH6-DT enhanced cell prolif-
eration, invasion and migration via PI3K-AKT signal pathway 
[35]. LPP-AS2 functions as a ceRNA by sponging miR-7-5p to 
promote glioma tumorigenesis [36].

Increasing evidence demonstrates that ferroptosis is increas-
ingly linked to tumor progression. Ferroptosis effectively sup-
presses tumor growth [37, 38]. A close relationship exists between 
the tumor suppressor p53 and ferroptosis [39, 40]. p53 represses 
transcription of solute carrier family 7 member 11(SLC7A11) by 

binding the promoter region of the gene, and further enhances 
ferroptosis [40]. SLC7A11, a key transporter of cystine, medi-
ates antioxidant defense to suppress ferroptosis. Considering the 
widespread presence of p53 mutations in cancers [41], ferroptosis 
may play an essential role in alleviating tumor progression. The 
role of ferroptosis was also observed in thyroid cancer. Wang et al 
suggested that circ_0067934 inhibited ferroptosis through miR-
545-3p/SLC7A11 signaling, and further contributed to cell pro-
liferation of thyroid cancer [42]. Fat mass and obesity-associated 
protein suppresses progression of PTC via m6A methylation of 
SLC7A11 in a ferroptosis-dependent manner [43].

Previous studies have shown that ferroptosis is associ-
ated with immune. Supernatants of activated CD8+ T cells de-
creased SLC7A11 expression in HT-1080 cells, and cell death 
induced by erastin, a ferroptosis activator, enhanced following 
knockdown of SLC7A11 [44], which was consistent with our 
results that CD8+ T cells was upregulated in low-risk groups. 
Additionally, 1-steaoryl-2-15-HpETE-sn-glycero-3-phos-
phatidylethanolamine (SAPE-OOH) on the surface of ferrop-
totic cells can be recognized by Toll-like receptor 2 (TLR2) on 
macrophages, resulting in clearance of ferroptotic cells [45].

We experimentally validated that LINC00900 inhibited 
proliferation, migration and invasion of TPC-1 and BCPAP 
cells, while LINC01614 and PARAL1 enhanced that of cells. 

Figure 4. The heat map illustrating the expression of five ferroptosis-related lncRNAs and distribution of clinicopathological vari-
ables between high- and low-risk groups. *P < 0.05, **P < 0.01. lncRNA: long non-coding RNA.
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Recent studies have shown that LINC01614 contributes to 
osteosarcoma progression through miR-520a-3p/SNX3 axis 
[46]. Furthermore, LINC01614 downregulation suppressed 
the development of lung adenocarcinoma by increasing the ex-
pression of miR-217 and downregulating FOXP1[47].

There are a few limitations in this study. First, only the 
role of three lncRNAs which highly expressed in PTC cells 
on proliferation, migration and invasion were verified. In ad-
dition, the mechanism of action was not elucidated. Moreover, 
further validations are required in clinical samples. In the fol-
lowing study, a more in-depth study should be carried out.

Conclusions

In conclusion, a novel five-ferroptosis-related lncRNA mod-

el was established to predict the prognosis and immune re-
sponse of PTC patients. Clinicopathological variables were 
also correlated with this model. Our study further verified that 
LINC00900 was a tumor suppressor lncRNA, LINC01614 
and PARAL1 acted as an oncogenic lncRNA. In summary, 
our results may provide novel insight for the treatment regi-
mens of PTC patients.

Supplementary Material

Suppl 1. KEGG and GO enrichment analysis of ferroptosis-
related DEGs. (A) KEGG enrichment analysis of ferroptosis-
related DEGs. (B) GO enrichment analysis of ferroptosis-re-
lated DEGs.
Suppl 2. The expression of each gene associated with overall 

Figure 5. Immune analysis. (a)The heat map visualizing the distribution of immune cells in high- and low-risk groups. (b) Immune 
function scores between high- and low-risk groups. (c) The expression of immune checkpoint genes in high- and low-risk groups. 
*P < 0.05, **P < 0.01, ***P < 0.001.
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survival in the TCGA data. (A) PARAL1. (B) LINC00900. (C) 
DPH6-DT. (D) LINC01614. (E) LPP-AS2.
Suppl 3. Distribution of risk score and survival time in patients 
between high- and low-risk groups. (A) Distribution of risk 
score in patients between high- and low-risk groups. (B) Sur-
vival time of patients with different risk score.
Suppl 4. The coexpression network between five ferroptosis-
related lncRNAs and mRNA.
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