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Abstract

Background: Peripheral traditional immune cell disorder plays an 
important role in cancer onset and development. The causal relation-
ships between leukocytes prior to cancer and the risk of digestive 
system cancer remain unknown. This study assesses the causal cor-
relations between leukocytes and digestive system cancer risk in East 
Asians and Europeans.

Methods: Summary-level data on leukocyte-related genetic variation 
were extracted from Biobank Japan (107,964 participants) and a re-
cent large-scale meta-analysis (563,946 participants). Summary-level 
data for the cancers were obtained from Biobank Japan (212,978 indi-
viduals) and the FinnGen consortium (178,802 participants). Univari-
able and multivariable Mendelian randomization (MR) analyses were 
performed on East Asians and Europeans separately.

Results: Univariable MR analysis demonstrated the significant as-
sociation between circulating eosinophil counts and risk of colo-
rectal cancer (CRC) in East Asians (odds ratio (OR) = 0.80, 95% 
confidence interval (CI): 0.69 - 0.92, P = 0.002) and a suggestive 
relationship in the European population (OR = 0.86, 95% CI: 0.77 
- 0.97, P = 0.013). An inverse suggestive association was observed 
between levels of basophils and the risk of gastric cancer (GC) in 
East Asians (OR = 0.83, 95% CI: 0.72 - 0.97, P = 0.019). The mul-

tivariable MR analysis showed the independent causal effect of eo-
sinophil count on CRC risk in East Asians (OR = 0.72, 95% CI: 0.57 
- 0.92, P = 0.009) and Europeans (OR = 0.80, 95% CI: 0.70 - 0.92, 
P = 0.002). Circulating basophils served as the negative causal fac-
tor in GC risk in East Asians (OR = 0.80, 95% CI: 0.67 - 0.94, P = 
0.007).

Conclusions: Our MR analyses revealed a genetic causal relation-
ship between reduced blood eosinophils and an increased CRC risk in 
both Europeans and East Asians. Furthermore, our results suggested 
a causal association between decreased basophils and an elevated GC 
risk specifically in East Asians.
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Introduction

The immune system plays a complex role in the formation 
and progression of cancer. The release of tumor-associated 
antigens leads to the stimulation of innate and adaptive im-
munity, including intratumoral lymphocytic infiltrate and sys-
temic immunosurveillance, posing an essential defense against 
tumorigenesis [1]. Recent studies have demonstrated that lo-
cally specific tumor macroenvironments, especially for CD8+ 
infiltrating T cells, have a close association with the prognosis 
of cancer [2, 3]. Inflammation-associated prognostic indica-
tors assessed using various circulating white blood cell (WBC) 
subtypes measured in routine blood examination showed fa-
vorable predictive values for tumor metastasis and mortal-
ity, such as the neutrophil-to-lymphocyte and lymphocyte-
to-monocyte ratios [4-6]. Additionally, the level of peripheral 
WBCs reflects the innate immune function to a certain degree. 
The application of immunosuppressive agents leads to leuko-
penia, lymphopenia, and immune impairment. Whether the 
levels of circulating leukocyte subtypes before cancer diagno-
sis have a causal relationship with the risk of cancer remains 
largely unexplored.

A previous study explored the relationship between the 
systemic immune-inflammation index, which is calculated by 
multiplying the platelet count by the neutrophil-to-lymphocyte 
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ratio prior to cancer diagnosis, and solid cancer risk. The re-
sults of this study showed that a high systemic immune-inflam-
mation index is a strong and independent risk factor for solid 
tumors [7]. Another similar study investigated the correlations 
between four systemic inflammation markers, including the 
systemic immune-inflammation index and the neutrophil-to-
lymphocyte, lymphocyte-to-monocyte, and platelet-to-lym-
phocyte ratios, and the incidence of multiple cancers. Periph-
eral cell ratios before diagnosis were found to have a favorable 
predictive value in the incidence of colorectal and lung cancers 
[8]. Additionally, Wong et al explored the connection between 
total and differential WBC counts and lung cancer risk using 
UK Biobank data [9]. A significant relationship between an 
elevated total WBC count and increased lung cancer risk was 
observed, driven primarily by an elevated neutrophil fraction. 
However, the cause-and-effect relationship between the total 
and differential leukocyte counts and tumor risk was not estab-
lished. Although a large number of participants were recruited 
in these observational studies, potential confounding factors 
and other biases cannot be ignored.

Mendelian randomization (MR) could serve as an effec-
tive analytical approach to identify the role of leukocytes in 
digestive system cancers [10-12]. Genetic variants are used as 
instrumental variables (IVs) in MR to evaluate the potential 
causal association between exposure and outcome because of 
their random distribution during meiosis [13]. Moreover, the 
germline genotype precedes the onset and progression of the 
disease, which also minimizes the confounding of the vari-
ables. In this study, univariable and multivariable MR analy-
ses were performed on East Asian and European populations 
separately to assess whether peripheral leukocytes are related 
to digestive system cancers and to determine the causality in 
connection with publicly available genome-wide association 
studies (GWASs) [14, 15].

Materials and Methods

Study design

An overview of the univariable and multivariable MR designs 
is shown in Figure 1. The causal association between six leu-
kocyte traits and five digestive system cancers was elucidated 
in this study. East Asian and European cohorts were used to 
further assess whether these relationships differ between eth-
nic groups. The six leukocyte traits included total WBC, baso-
phil (BASO), eosinophil (EOS), lymphocyte, monocyte, and 
neutrophil counts. The five digestive system cancers included 
esophageal cancer (ESCA), gastric cancer (GC), colorectal 
cancer (CRC), liver cancer (LC), and pancreatic cancer (PC). 
Apart from the univariable MR, the multivariable method was 
also conducted in this study to eliminate the interaction among 
the different leukocyte traits. This study was conducted with 
the approval of the Institutional Review Board of the Harbin 
Medical University Cancer Hospital. This study was conduct-
ed in compliance with the ethical standards of the responsible 
institution on human subjects as well as with the Helsinki Dec-
laration.

Association between genetic IVs and circulating leukocyte 
traits

Genetic variants of six peripheral leukocyte traits were collect-
ed from recent large-scale datasets on East Asian and Europe-
an individuals. For East Asians, summary statistics of WBCs 
and their subtypes were extracted from the study by Kanai et 
al, containing 107,964 total WBCs and 62,076 cases of the five 
subtypes among Asians [16]. For Europeans, a meta-analysis 
performed by the Blood Cell Consortium was used to collect 
GWAS data on six circulating leukocyte traits (563,946 Cau-
casians) [17]. Age, sex, and the first 10 principal components 
were corrected in these two GWAS studies.

Association between genetic IVs and digestive system 
cancers

The GWAS data on digestive system cancers, including ESCA, 
GC, CRC, LC, and PC, were obtained from the study by Ishi-
gaki et al, based on East Asian patients [18], and FinnGen, 
which contained data on European individuals. The study on 
East Asians included 1,300 ESCA, 6,563 GC, 7,062 CRC, 
1,866 LC, 442 PC cases, and 195,745 controls. The European 
population cohort contained 232 ESCA, 633 GC, 3,022 CRC, 
304 LC, 605 PC patients, and 174,006 controls. A differen-
tial diagnostic strategy was performed for these cancers. The 
GWAS summary statistics in the study by Ishigaki et al and 
FinnGen were available in the IEU OpenGWAS database [19].

Selection of genetic variants

The main assumptions for MR were: the genetic predictors of 
exposure were strongly related to the exposure phenotypes; 
the genetic predictors were independent of confounders; and 
the genetic predictors were associated with the outcome only 
by affecting the exposure; and no other pathways exist [20]. 
Single nucleotide polymorphisms (SNPs) strongly and inde-
pendently (R2 < 0.01) associated with exposure and distance 
(< 10 kb) were selected at the genome-wide significance level 
(East Asian cohort: P < 5 × 10-9; European cohort: P < 5 × 10-
16). SNP-specific F-statistics were calculated to evaluate the 
instrumental efficiency of SNPs based on R2, exposure sample 
size, and the number of SNPs [21]. SNPs were rejected if F-
statistics were less than 10. Additionally, exposures with fewer 
than three independent SNPs were omitted. We scanned the 
GWAS Catalog to reveal the associations between SNPs and 
other potential confounders to reduce the impact of pleiotropic 
IVs on MR results (Supplementary Material 1, www.wjon.org) 
[22].

Statistical analysis

Univariable and multivariable MR analyses were conducted to 
assess the potential causal associations between the six periph-
eral leukocyte traits and the risk of five digestive system can-
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cers. The potential outliers are detected through the Mendelian 
Randomization Pleiotropy Residual Sum and Outlier (MR-
PRESSO) analysis, while the causal estimates are obtained af-
ter removing outlier variants [23]. Additionally, heterogeneity 
among the SNPs was assessed by Cochran’s Q test. For univar-

iable MR analysis, the inverse variance weighted (IVW) ana-
lytical approach was used as the main MR analysis [20, 24]. 
Due to the existence of the uncertain “exclusion-restriction” 
assumption, other sensitivity analyses were applied along with 
the MR-Egger analysis and the weighted median (WM) [21, 

Figure 1. Study design of the univariable and multivariable Mendelian randomization analyses of the associations between six 
leukocyte traits and five digestive system cancers in East Asian and European cohorts. CRC: colorectal cancer; ESCA: esopha-
geal cancer; GC: gastric cancer; LC: liver cancer; PC: pancreatic cancer.
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25]. The slope and intercept of the MR-Egger analysis were 
used to evaluate potential causal estimates and the degree of 
pleiotropy, respectively [25]. Moreover, the Benjamini-Hoch-
berg false discovery rate correction for six leukocyte traits was 
performed for multiple comparisons [26]. Although multiple 
testing was not necessary for multivariable MR analysis for 
mutual adjustment, “leave-one-out” analyses were conducted 
to evaluate the stability of our findings. For multivariable MR 
analysis, the mutual interactions between different leukocyte 
subtypes, except for the total WBC, were assessed [27]. De-
tailed information on other methods applied in this study is 
provided in the supplementary material (Supplementary Mate-
rial 2, www.wjon.org). All analyses were two-sided and per-
formed using R version 4.0.2, along with the “TwosampleMR” 
and “MR-PRESSO” R packages. The mRnd tool was used to 
calculate the statistical power [28].

Results

The characteristics of IVs

All six peripheral leukocyte traits had three or more independ-
ent genome-wide significant SNPs in both the East Asian and 
European cohorts. The final SNPs included in further univari-
able analyses were shown here (Supplementary Materials 3, 
4, www.wjon.org). The characteristics of each exposure and 
genetic IVs are presented here (Supplementary Material 5, 
www.wjon.org). The F-statistics of our univariable MR analy-
sis ranged from 46.00 to 90.47 in the Asian population and 
152.59 to 258.63 in the European population, suggesting that 
weak instrument bias may not be substantial in this study (Sup-
plementary Material 6, www.wjon.org) [29]. No directional 
pleiotropy was observed in these filtered IVs, implying that 
MR assumptions were likely to not be violated (Supplemen-
tary Materials 7, 8, www.wjon.org).

Low peripheral BASO level increased the risk of GC in 
the East Asian cohort

The MR association estimates of the causal association be-
tween the six leukocyte traits and the risk of the five digestive 
system cancers in Asians are shown in Figure 2, and detailed 
outcomes are shown here (Supplementary Material 7, www.
wjon.org). The IVW showed that lower BASO levels have a 
suggestive association with an increased risk of GC. Specifi-
cally, each standard deviation (SD) (41 cells/µL) decrease of 
BASO increased the GC risk, with an odds ratio (OR) = 0.83 
(95% confidence interval (CI): 0.72 - 0.97; P = 0.019). The 
same effect of BASO on GC was also observed using the WM 
method (OR = 0.80; 95% CI: 0.64 - 0.99; P = 0.044). Addi-
tionally, the effect directions of the MR-Egger method were 
consistent with the IVW and WM approaches, although no 
significant effects were observed (Fig. 3a). No horizontal plei-
otropy was detected in the MR-PRESSO global test and the 
MR-Egger intercept test, and no heterogeneity was observed 
in Cochran’s Q tests. The leave-one-out sensitivity analysis 

demonstrated the stability and efficiency of BASO-based ge-
netic prediction (Fig. 3b). A multivariable MR analysis was 
performed for further analysis to confirm the reliability of 
these results. Detailed information on SNPs included for fur-
ther multivariable analyses is presented here (Supplementary 
Material 8, www.wjon.org). No weak instrument bias existed 
in the five leukocyte subtypes. Our results also demonstrate 
that BASO has an independent effect on GC (OR = 0.80; 95% 
CI: 0.67 - 0.94; P = 0.007) (Fig. 3c).

Low peripheral EOS level increased the risk of CRC in 
the East Asian cohort

The outcome of the univariable MR analysis revealed a 
significant causal association between the EOS level in the 
blood and the risk of CRC in East Asians (Fig. 2). Detailed 
results can be seen here (Supplementary Material 7, www.
wjon.org). Specifically, each SD (143 cells/µL) decrease of 
EOS increased CRC risk (OR = 0.80; 95% CI: 0.69 - 0.92; 
P = 0.002). The same effect of EOS on CRC was also ob-
served in the MR-Egger (OR = 0.54; 95% CI: 0.32 - 0.92; P 
= 0.032) and WM methods (OR = 0.74; 95% CI: 0.60 - 0.90; 
P = 0.003). The direction of the effect is the same in these 
three methods (Fig. 3d). Horizontal pleiotropy was not de-
tected in the MR-PRESSO global and MR-Egger intercept 
tests, while heterogeneity was not observed in Cochran’s Q 
tests. The leave-one-out sensitivity analysis demonstrated the 
stability and efficiency of EOS-based genetic prediction (Fig. 
3e). Detailed information on SNPs included for further mul-
tivariable analyses is presented here (Supplementary Mate-
rial 9, www.wjon.org). No weak instrument bias existed in 
the five leukocyte subtypes. A negative relationship between 
the circulating EOS and CRC risk was identified through the 
multivariable MR analysis (OR = 0.72; 95% CI: 0.57 - 0.92; 
P = 0.009) (Fig. 3c).

Low peripheral EOS level increased the risk of CRC in 
the European cohort

The univariable MR analysis in this study using the IVW meth-
od found a suggestive causal relationship between the level 
of circulating EOS and CRC risk in Europeans (OR = 0.86; 
95% CI: 0.77 - 0.97; P = 0.013) (Fig. 2). Detailed outcomes 
are presented here (Supplementary Material 10, www.wjon.
org). No significant effects were observed using the WM and 
MR-Egger methods, while the effect directions of these two 
methods were consistent with those of the IVW method (Fig. 
3f). No horizontal pleiotropy was detected in the MR-PRESSO 
global and MR-Egger intercept tests, and no heterogeneity was 
observed in Cochran’s Q tests. The leave-one-out sensitivity 
analysis demonstrated the stability and efficiency of EOS-
based genetic prediction (Fig. 3g). Detailed information on 
SNPs included for further multivariable analyses is presented 
here (Supplementary Material 11, www.wjon.org). Weak in-
strument bias was not present in these five leukocyte subtypes. 
A negative relationship between blood EOS and CRC risk was 
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confirmed through the multivariable MR analysis (OR = 0.80, 
95% CI: 0.70 - 0.92, P = 0.002) (Fig. 3c).

Discussion

In this study, univariable and multivariable MR analyses were 
performed to evaluate the causal association between circulat-
ing WBCs and their subtypes and digestive system cancers in 
East Asian and European populations. Through the univariable 
MR analysis, we found a suggestive causal relationship be-
tween the level of circulating BASO before cancer diagnosis 
and GC risk in East Asians, and a strong causal association be-
tween the level of peripheral EOS prior to cancer and CRC risk 
in Europeans. A significant connection between blood EOS be-
fore cancer and the risk of CRC was observed in East Asians. 
The multivariable MR analysis confirmed the significance 
among the three associations and revealed that the level of pe-
ripheral EOS levels before cancer diagnosis is an independ-
ent causal mediator for CRC in both East Asian and European 

populations, and BASO levels before cancer diagnosis serve as 
an independent effect on GC in East Asians. A causal associa-
tion between other leukocytes and digestive system cancers in 
these two ethnic groups could not be established.

The results of this study demonstrate that immune dysreg-
ulation plays an important role in tumor initiation and devel-
opment. Lower EOS levels may contribute to the occurrence 
of CRC. EOS, one of the primitive cells of the innate immune 
system, is produced by the bone marrow and then released into 
the circulatory system. EOS was primarily studied concerning 
helminth infections and allergic diseases such as asthma [30, 
31]. Recent studies have found that EOS also participates in the 
regulation of tumorigenesis and tumor progression [32]. EOS, 
activated by interferon-gamma (IFNg), can synthesize and 
secrete granule proteins and release reactive oxygen species, 
having the ability to kill tumor cells when subjected to specific 
stimuli [33, 34]. Additionally, EOS is capable of remodeling 
the tumor microenvironment, by either directly infiltrating tu-
mors or indirectly secreting cytokines to attract immune ef-
fect cells, like CD8+ T cells, into the tumor microenvironment 

Figure 2. Associations between genetically six predicted circulating leukocyte traits and five digestive system cancers in East 
Asians and Europeans, based on the univariable inverse variance weighted analysis. Odds ratio (OR) and 95% confidence in-
terval (CI) represent the change in OR of cancers per 1 standard deviation (SD) increase in each leukocyte subtype in the blood.
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Figure 3. The effect of each leukocyte trait on the risk of gastric cancer and colorectal cancer. (a) The effect estimators of blood 
basophil count on the risk of gastric cancer in East Asians, based on three univariable MR methods (IVW, MR-Egger, and WM). 
(b) Leave-one-out sensitivity analysis for basophil count on gastric cancer in Asians. (c) Multivariable MR estimators represent-
ing the effect of each leukocyte count on the risk of gastric cancer in East Asians (left), colorectal cancer in East Asians (middle), 
and colorectal cancer in Europeans (right). (d) The effect estimators of blood eosinophil count on the risk of colorectal cancer 
in East Asians, based on three univariable MR methods (IVW, MR-Egger, and WM). (e) Leave-one-out sensitivity analysis for 
eosinophil count in colorectal cancer in Asians. (f) The effect estimators of the blood eosinophil count on the risk of colorectal 
cancer in Europeans, based on three univariable MR methods (IVW, MR-Egger, and WM). (g) Leave-one-out sensitivity analysis 
for eosinophil count in colorectal cancer in Europeans. Odds ratio (OR) and 95% confidence interval (CI) represent the change 
in OR of cancers per 1 standard deviation (SD) increase in each blood leukocyte subtype. IVW: inverse variance weighted; MR: 
Mendelian randomization; WM: weighted median.
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[35]. EOS has been reported to have a direct cytotoxic effect 
on CRC cells, including Colo-205, MC38, and CT26 cells [36-
38]. The cytotoxicity of EOS could be potentiated through the 
cytokines produced by the autocrine action of EOS and the 
paracrine functions of other immune cells [37, 38]. EOS cy-
totoxicity towards Colo-205 is accompanied by the release of 
EOS cationic protein, EOS-derived neurotoxin, and granzyme 
A, and could be strengthened by interleukin (IL)-18 and IL-
33 [37-39]. Both of these ILs increased the intracellular adhe-
sion molecule 1 expression by EOS, to promote the adhesion 
to CRC cells. A recent study confirmed the antitumorigenic 
role of EOS during CRC tumorigenesis induced by inflamma-
tion, in vivo [36]. EOS is recruited by spontaneous intestinal 
adenomas and plays an important role in tumor transformation 
and progression, independent of CD8+ T-cell antitumorigenic 
activities. Additionally, EOS counts were reported to have a 
negative association with tumor stage in patients with CRC. 
Results of these in vitro and in vivo studies demonstrated that 
EOS may act as a tumor suppressor during the initial phase, 
which is consistent with our findings. This study provides evi-
dence that those having a lower base level of EOS, innately or 
due to EOS-depleting therapies, may be more vulnerable to 
CRC, among both East Asians and Europeans.

In this study, a prominent causal effect of BASO level on 
GC risk was observed in the East Asian cohort, but not in the 
European cohort. BASO accounts for less than 1% of human 
circulating leukocytes, and the function of BASO in experi-
mental and human cancer is inconsistent [40]. BASO exerts 
anti-tumorigenic effects by releasing granzyme B, tumor ne-
crosis factor-alpha (TNF-α), and histamine, while promoting 
angiogenesis and tumor development by releasing various 
growth factors such as vascular endothelial growth factor 
A [40]. The prognostic estimate of peripheral BASO counts 
varies in different solid tumors [41]. A higher level of blood 
BASO has a positive association with better prognosis in 
melanoma patients treated with immune checkpoint inhibitors, 
while CRC and bladder cancer patients with a lower baseline 
of BASO suffered from poor outcomes and a higher possibility 
of metastasis [42-45]. This association was also observed in a 
mouse model of breast cancer, and a higher proportion of lung 
metastases occurred in mice with basopenia [46]. These stud-
ies show the protective role of BASOs in tumors. However, no 
independent prognostic level of peripheral BASO was found 
in breast cancer patients [47]. Additionally, He et al identified 
BASO surrounding tumors as an independent adverse prognos-
tic factor in GC, and they found that an abundance of BASO 
has a close association with chemoresistance and immune es-
cape [48]. However, our MR analysis with a large sample size 
revealed a negative relationship between circulating BASOs 
before cancer diagnosis and GC risk. As for the difference in 
the effect of BASO on GC in different ethnic groups, the dif-
ferences in the main risk factor profiles should be taken into 
consideration. More than half of the total GC cases worldwide 
are diagnosed in Eastern Asia each year, and chronic infec-
tion with Helicobacter pylori is the most significant risk factor 
for GC in this region [49]. Ten years of Helicobacter pylori 
infection was found to increase the odds of GC by 5.9-folds, 
through the function of IL-10 and IL-17 polymorphisms [50]. 
A well-known interaction between BASO and Helicobacter 

pylori is that the specific immunoglobulin (Ig)E immune re-
sponse induced by Helicobacter pylori contributes to hista-
mine release by BASO, which further leads to chronic gastric 
inflammation [51]. To date, few studies have investigated the 
possible underlying mechanism of BASO in cancer initiation 
and development.

Several advantages exist in this investigation, including 
the strength of the genetic IVs, the design of univariable and 
multivariable MR analysis, and two ethnic population cohorts 
containing large-scale individuals. However, there are limita-
tions to our findings as well. First, the counts of WBCs and 
their subtype are vulnerable to various influences from physi-
cal or psychosocial changes. Second, although several poten-
tial confounding factors have been adjusted in this study, resid-
ual confounding by unmeasured factors cannot be excluded. 
Consequently, pleiotropy biases may be the main interferences 
in our findings. However, the results of pleiotropic and extra 
sensitivity analyses indicate the robustness of the outcomes of 
our study. Third, detailed information about these individuals 
concerning tumor stage, mental and physical conditions, and 
other concomitant diseases was unknown. Future large-scale 
databases with more detailed individual information are re-
quired, to address these problems. Lastly, a reverse MR was 
not performed in this study, not providing any potential value 
for clinical practice. As significant changes in leukocytes oc-
cur in cancer patients after chemotherapy or radiotherapy, the 
impact of the tumor itself on WBCs is negligible.

Conclusions

In conclusion, this study provides genetic evidence on the 
causal association between EOS levels and the risk of CRC in 
both East Asians and Europeans. The causal effect of BASO 
levels on GC was observed only in East Asians. East Asian and 
European populations with a lower level of peripheral EOS 
may be vulnerable to CRC. Additionally, East Asians with 
decreasing BASO levels in the blood are more prone to GC. 
Further exploration of the underlying mechanisms in these as-
sociations is required.
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