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Abstract

Background: Germline genetic testing (GGT) has significant im-
plications in the management of patients with prostate cancer (PCa). 
Herein, we report on patterns and frequency of pathogenic/likely 
pathogenic germline variants (P/LPGVs) among newly diagnosed 
Arab patients with PCa.

Methods: Patients meeting the National Comprehensive Cancer Net-
work (NCCN) eligibility criteria for GGT were offered a 19-gene PCa 
panel or an expanded 84-gene multi-cancer panel.

Results: During the study period, 231 patients were enrolled; 107 
(46.3%) had metastatic disease at diagnosis. In total, 17 P/LPGVs 
were detected in 17 patients (7.4%). Among the 113 (48.9%) patients 
who underwent GGT with the 19-gene panel, eight (7.1%) had P/
LPGVs, compared to nine (7.6%) of the 118 (51.1%) who did GGT 
through the expanded 84-gene panel (P = 0.88). Variant of uncertain 
significance (VUS) rate was higher (n = 73, 61.9%) among the group 
who underwent expanded 84-gene panel testing compared to those 
who underwent the 19-gene PCa panel (n = 35, 30.9%) (P = 0.001). P/
LPGVs in DNA damage repair (DDR) genes, most frequently BRCA2, 
CHEK2 and TP53, were the most common P/LPGVs findings.

Conclusion: This study is the first to characterize the germline ge-
netic profile of an Arab population with PCa. All detected P/LPGVs 
were potentially actionable, with most variants able to be detected 
with a PCa-specific panel.
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Introduction

Prostate cancer (PCa) is the second most common cancer di-
agnosed among men worldwide and its incidence is highest in 
Western societies [1]. Treatment options for localized disease 
include active surveillance, radical prostatectomy, or radio-
therapy. Selection of the treatment modality is typically de-
pendent on a multi-disciplinary approach that incorporates risk 
category, performance status, associated comorbidities, and 
patients’ preference [1, 2]. The standard of care for patients 
with metastatic disease has shifted towards early therapy in-
tensification, which involves combining androgen deprivation 
therapy (ADT) with either docetaxel or a novel oral androgen 
signaling inhibitor. This approach has demonstrated improved 
outcomes compared to ADT alone [2-5].

Despite the progress made in treating localized and meta-
static PCa, a considerable number of patients still experience 
poor outcomes. Expanding our knowledge of molecular bio-
markers and pathogenic/likely pathogenic germline variants 
(P/LPGVs) holds promise in revealing valuable insights into 
the diverse characteristics and outcomes of these patients, and 
in informing treatment decisions. New studies are shedding 
light on multiple genomic and environmental risk factors in 
PCa. Nevertheless, current understanding of the influence of 
these factors on outcomes is still limited [6].

Over the last decade, there has been a heightened inter-
est in the inherited component of PCa, as these P/LPGVs may 
have implications on screening and treatment decisions [7-9]. 
Germline genetic testing (GGT) identifies a spectrum of can-
cer predisposition variants, from low to high risk. At least 170 
inherited variants have been identified, which are involved in 
about one-third of familial PCa cases. This list includes DNA 
damage repair (DDR) genes such as ATM, BRCA1, BRCA2, 
CHEK2, MLH1, MSH2, MSH6, NBN, PALB2 and PMS2 [8-
10], some of which are predictive of unfavorable prognosis 
irrespective of disease stage and may guide treatment selec-
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tion, such as the use of poly-ADP ribose polymerase (PARP) 
inhibitors in patients with metastatic PCa who harbor ger-
mline BRCA1/2 mutations [8-12]. Accordingly, current guide-
lines, including the National Comprehensive Cancer Network 
(NCCN), the Philadelphia expert consensus (2019) and the 
American Urological Association (AUA), endorse GGT for 
PCa with minor differences between these guidelines regard-
ing the panel of genes to be tested and the eligibility criteria 
[13-15]. Currently, NCCN guidelines recommend GGT for pa-
tients with high-risk localized, locally advanced and metastatic 
disease, or for patients with positive family history for cancer 
such as prostate and hereditary breast and ovarian syndromes, 
regardless of the disease stage [13].

The distribution of many P/LPGVs varies according 
to ethnicity and geographic region; however, data on the P/
LPGV landscape of PCa patients from the Middle East region 
remain scarce. Herein, we prospectively investigated patients 
who were treated at King Hussein Cancer Center, aiming to 
identify the patterns and frequency of P/LPGVs in this popula-
tion. Moreover, we sought to explore the additional value of 
expanded multi-gene panel testing (MGPT) for detection of 
additional P/LPGVs not captured with more limited MGPT.

Materials and Methods

Patient population

This was a prospective, single-institution study of P/LPGVs 
among newly diagnosed patients with prostatic adenocarci-
noma treated at King Hussein Cancer Center from March 2021 
to July 2022. Eligibility criteria included: age ≥ 18 years of 
Arab descent who met the NCCN criteria (version 1.2020) for 
GGT. Eligible men were stratified according to castrate status 
as per NCCN definition; castration resistance is defined as any 
biochemical, radiographic, or clinical progression, with serum 
testosterone < 50 ng/mL after hormonal therapy [16].

Genetic counseling

Patients were approached through the genetic counseling clin-
ic, and those who met the NCCN criteria were offered GGT 
with either a 19-gene PCa panel (“prostate MGPT”) or an ex-
panded 84-gene multi-cancer panel (“multi-cancer MGPT”), 
per patient choice. The prostate MGPT consists of 10 genes 
with established evidence for PCa and recommended by 
NCCN (ATM, BRCA1, BRCA2, CHEK2, HOXB13, MLH1, 
MSH2, MSH6, PALB2, and PMS2), in addition to nine other 
genes with preliminary evidence for PCa risk (EPCAM, NBN, 
TP53, ATR, BRIP1, FANCA, GEN1, RAD51C and RAD51D). 
The multi-cancer MGPT consists of 84 genes associated with 
various hereditary cancer syndromes (Supplementary Material 
1, www.wjon.org). Full-gene sequencing, deletion/duplication 
analysis, and variant interpretation were performed at a single 
commercial laboratory (Invitae Corporation, San Francisco, 
CA, USA), as previously described [17, 18]. Results were 
reported according to the American College of Medical Ge-

netics and Genomics (ACMG) and the Association for Mo-
lecular Pathology (AMP) five tiers classification: pathogenic 
(P), likely pathogenic (LP), variant of uncertain significance 
(VUS), likely benign and benign. Variants were classified as 
positive (≥ 1 P/LP), VUS (≥ 1 VUS in the absence of a P/
LPGV) and negative (no P/LP or VUS identified). Carriers of 
single P/LPGV in genes associated with autosomal recessive 
inheritance (e.g., MUTYH) were not counted in the overall P/
LPGV yield. NCCN guidelines recommend GGT for patients 
with high-risk localized and metastatic disease, or for patients 
with positive family history for cancer such as prostate and 
hereditary breast and ovarian syndromes, regardless of the dis-
ease stage [13]. Results were sent to the treating physician and 
the genetic counselor disclosed results to the patient.

Genetic testing

Patients’ identifiers were coded, and all GGT was performed 
on DNA extracted using a peripheral blood sample at a refer-
ence laboratory (Invitae Corporation) for both the limited and 
the expanded 84-gene MGP. Whole gene sequencing was per-
formed utilizing a next-generation sequencing (NGS) platform 
as previously described [17, 18].

Data collection and study procedures

Electronic medical records were accessed to obtain demo-
graphics and clinical data. Cancer family history was obtained 
during the genetic counseling consultation. Demographics, 
clinical characteristics, cancer family history and GGT results 
were documented in a Health Insurance Portability and Ac-
countability Act (HIPAA)-compliant database. Research was 
performed in accordance with relevant local and international 
guidelines and regulations including the Declaration of Hel-
sinki. The study was approved by the King Hussein Cancer 
Center Institutional Review Board (IRB) and registered under 
Clinicaltrial.gov identifier: NCT04920513.

Statistical analysis

Descriptive statistics were utilized to report means, median, 
standard deviations, and proportions. The Chi-square test was 
used to compare the rate of detection of P/LPGV and VUS and 
to explore the correlation between disease characteristics and the 
likelihood of identifying a P/LPGV; all P- values less than 0.05 
were considered statistically significant. All statistical analyses 
were performed using SPSS version 19 (SPSS Inc., Chicago, IL).

Results

Patient characteristics

A total of 266 patients were identified as eligible for GGT. 
After providing genetic counseling, 35 (13.1%) patients de-
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clined GGT; the majority (n = 24; 68.6%) did not believe in 
the value of GGT while seven (20.0%) were concerned about 
the stress related to results and an additional four (11.4%) de-
clined testing for financial reasons. The remaining 231 patients 
underwent GGT and comprised the cohort for analysis. The 
median age at diagnosis was 67 (range, 45 - 86) years, 124 
(53.7%) patients had localized disease while 107 (46.3%) had 
metastatic disease. The median baseline serum prostate-spe-
cific antigen (PSA) value was 32 (range, 2.4 - 3,975) ng/mL, 
and 146 (63.2%) of patients had a Gleason score ≥ 8. The most 
frequent indication for GGT was localized high-risk disease 
in 115 (49.8%) or metastatic in 107 (46.3%) and nine (3.9%) 
with positive family history for cancer. A total of 113 (48.9%) 
patients elected to do prostate MGPT, while the other 118 
(51.1%) patients opted for multi-cancer MGPT. Both groups 
were balanced in terms of their clinical characteristics.

Genetic testing results

A total of 17 P/LPGV were identified in 17 (7.4%) patients. 
Among the 113 patients who underwent prostate MGPT, eight 
(7.1%) had P/LPGV, compared to nine (7.6%) among the 118 
who had multi-cancer MGPT (P = 0.88). P/LPGVs were as fol-
lows: 14 patients (82.4%) had P/LPGV in DDR genes including 
ATM (n = 1), BRCA2 (n = 5), BRIP1 (n = 1), CHEK2 (n = 2), 

MLH1 (n = 1), PALB2 (n=1), PMS2 (n = 1), and TP53 (n = 2). 
Additional P/LPGV findings included RET (n = 1) and APC 
I1307K (n = 2) (Fig. 1). Notably, an additional five patients, not 
included in the total P/LPGV yield above, were identified as 
carriers of a single P/LPGV in a gene associated with an auto-
somal recessive cancer syndrome (one patient each with MSH3, 
NBN, RAD50, RECQL4, and WRN). Of these alterations, WRN 
(Intron 18; c.2088+1G>T (splice donor)) and MSH3 (deletion 
exon 9-19) have not been previously documented in ClinVar 
(Supplementary Material 2, www.wjon.org).

Only three of the detected P/LPGVs were not included in 
the PCa MGPT (RET and APC). Notably, there were no sig-
nificant differences in P/LPGV frequency by various clini-
cal characteristics, including castration status (sensitive vs. 
resistant), age (≤ 65 vs. > 65), Gleason score (≥ 8 vs. < 8), 
disease stage (localized vs. metastatic) or family history (Table 
1). All detected P/LPGVs were actionable based on published 
management guidelines (n = 17) or potential eligibility for 
clinical trials and/or targeted therapies (n = 12).

VUS

The most frequently observed alterations in the whole cohort 
were VUS in 108 (46.8%) patients with the absence of a P/
PLGV. VUSs were more commonly detected with the multi-

Figure 1. Pathogenic/likely pathogenic variants. PGV: pathogenic germline variant.
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cancer MGPT (n = 73, 61.9%), compared to the PCa MGPT (n 
= 35, 30.9%) (P < 0.001).

Discussion

To the best of our knowledge, this is the first study to exam-
ine the prevalence and characteristics of P/LPGV in Arab PCa 
patients. The first comprehensive GGT study in PCa was pub-
lished by Pritchard et al in 2016. Their study examined 692 pa-
tients with metastatic disease, who were unselected by family 
history or age at diagnosis. The study reported an 11.8% preva-
lence of P/LPGV in DNA repair genes. Notably, this frequency 
was significantly higher than that observed in a cohort of 499 
patients with localized disease, where only 4.9% had P/LPGV 
in DNA repair genes [19]. Subsequent studies, including both 
retrospective and prospective unselected cohorts, have report-
ed P/LPGV prevalence ranging from 8% to 20% [20, 21].

The prevalence of P/LPGV in our patient population is 
slightly lower (7.4%) than has been reported in the aforemen-
tioned studies [22-24]; however, it is similar to the yield re-
cently reported by Shore et al (7.7%) in a prospective GGT 
study of unselected PCa where the majority had low-grade 
localized disease [25]. Similar to our study, their P/LPGV 
yield excluded carriers of single P/LPGV in autosomal reces-
sive cancer syndrome genes. Various factors contribute to the 
range of P/LPGV identified, including study design whether 
retrospective or prospective, patient characteristics, including 
the proportion of metastatic or advanced disease, in addition 

to specific criteria used for GGT eligibility, and differences 
in testing methodologies or genes included on MGPT. Fur-
thermore, racial disparities in P/LPGV rates may contribute 
to this variation. A recent study by Giri et al highlighted the 
discrepancy in P/LPGV rates between PCa patients of different 
ethnicities in the USA. The frequency of P/LPGV was nota-
bly higher in White patients (11%) compared to Black/African 
American patients (5.9%) [21]. This is not unexpected given 
the over-representation of White European participants in the 
genetic studies that inform GGT criteria and variant interpreta-
tion databases, resulting in higher rates of uncertain findings 
and lower rates of definitive molecular diagnoses in individu-
als from historically underrepresented non-White populations, 
including Arab patients [26-28]. This is evident in a study from 
Korea which reported P/LPGV in 5.8% of tested Korean men 
with mutations similar to our study [29]. Furthermore, many 
studies have documented higher P/LPGV prevalence in meta-
static castrate-resistant PCa (mCRPC) compared with castrate-
sensitive cases, nevertheless, our results did not show a signifi-
cant difference between the two groups, though this may be 
due to our study being under-powered to detect the difference 
between these two groups.

Consistent with other data from literature [20, 21, 30], our 
study showed that the most prevalent P/LPGVs in PCa were in 
homologous recombination repair (HRR) genes, whereas only 
0.9% had DNA mismatch repair (MMR) gene alterations. No-
tably, we reported two cases (12% of positive results) of the 
increased risk allele APC I1307K, which is associated with in-
creased risk for colorectal cancer and is prevalent among Ash-

Table 1.  PGV Rates Across Clinical Variables (n = 231)

Characteristics N (%) PGVs, N (%) P-value
Age at diagnosis (years) 0.542
    Median (range) 67 (45 - 86)
    ≤ 65 106 (48.9) 9 (8.5)
    ≥ 65 125 (54.1) 8 (6.4)
Genetic testing 0.884
    Prostate MGPT 113 (48.9) 8 (7.1)
    Multi-cancer MGPT 118 (51.1) 9 (7.6)
Gleason score 0.935
    < 8 77 (33.3) 6 (7.8)
    ≥ 8 146 (63.2) 11 (7.5)
Stage at diagnosis 0.582
    Localized 124 (53.7) 8 (6.5)
    Metastatic 107 (46.3) 9 (8.4)
Castration status 0.794
    Sensitive 65 (28.1) 5 (7.7)
    Resistant 44 (19.0) 4 (9.1)
Family history 0.414
    Positive 171 (74.0) 14 (8.2)
    Negative 60 (26.0) 3 (5.0)

MGPT: multi-gene panel testing; PGVs: pathogenic germline variants.
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kenazi Jews [24]; the high incidence in the Arab population 
warrants further investigation. We acknowledge that it is con-
troversial to classify mutations such as APC I1307K CHEK2 
c.470T>C as pathogenic, given their high prevalence in gen-
eral population. This is another hot area for future research.

The NCCN PCa GGT guidelines (version 4.2023) recom-
mend testing of 10 genes; however, most commercial labora-
tories offer customized panels with specific add-on genes with 
preliminary evidence. The prostate MGPT we utilized for test-
ing included nine additional non-NCCN genes, which resulted 
in the identification of three additional P/LPGVs. Multi-can-
cer MPGT resulted in the detection of only three additional 
P/LPGVs (two APC and one RET with RECQL4 as a carrier 
finding). Multi-cancer MGPT was associated with a statisti-
cally significant increase in VUS. However, patients with VUS 
should be managed based on their personal and family history 
as the majority of VUSs are ultimately reclassified to benign 
[31-33]. Nevertheless, detecting these VUSs in understudied 
population, such as our population, might result in reclassifi-
cation of some of these genes to P/LPGV. Meanwhile, VUS 
can significantly increase anxiety and psychological distress 
for both patients and physicians, because of the uncertainty 
of VUS impacts. However, knowledge accumulation would be 
useful in future genetic research, moreover patients and fami-
lies with VUS can be notified when the gene is reclassified.

Notably, four patients were found to have alteration in a 
gene associated with autosomal recessive cancer inheritance. 
While these findings may not directly impact cancer risk, they 
can be important for cascade testing, and in the case of DDR 
genes such as NBN and RAD50, may even qualify patients for 
clinical trials (NCT03413995, NCT03209401). Interestingly, 
the WRN (splice site) and MSH3 (deletion) variants detected 
in our study have not been reported in the literature or pub-
lic databases. Furthermore, the other two identified P/LPGVs 
(RAD50 and NBN) have been reported in breast cancer but not 
in PCa [22, 23]. Additional studies are warranted to assess the 
significance of these alterations in PCa. Another observation in 
our study was the TP53 mutation in the context of Li-Fraumeni 
spectrum cancers, as the two patients with TP53 had family 
history for malignancy. One had family history of lung, breast, 
colorectal, lymphoma and kidney cancers in first-degree rela-
tives. While the second had family history of breast cancer and 
PCa in three of his relatives.

GGT plays a crucial role in precision medicine, by provid-
ing relevant prognostic information and identifying gene al-
terations that could serve as therapeutic targets. Accumulating 
data confirm the clinical activity of PARP inhibitors in patients 
with germline and somatic DDR gene alterations [8, 34, 35]. 
In the PROfound trial, olaparib showed improved radiographic 
progression-free survival (rPFS) and overall survival (OS) in 
mCRPC compared to novel hormonal agents, particularly in 
patients with BRCA1/2 or ATM alterations, and these findings 
led to FDA approval in May 2020 [36, 37]. Another trial, TRI-
TON 3, evaluated rucaparib in mCRPC patients with deleteri-
ous alterations in BRCA1, BRCA2, or ATM, showing improved 
rPFS compared to investigator’s choice treatment in patients 
with BRCA1/BRCA2 alterations but not in those with ATM al-
terations [35]. Recently, the FDA approved the combination 
of olaparib and abiraterone with prednisolone in patients with 

BRCA-mutated mCRPC based on data from the PROPEL trial, 
demonstrating improved rPFS and OS compared to abirater-
one and prednisolone. This improvement was observed in pa-
tients with BRCA mutations but not in those without BRCA 
mutations [38]. More recently, niraparib has been approved in 
combination with abiraterone in first line setting for somatic 
BRCA-mutated mCRPC based on the phase 3 MAGNITUDE 
study [39-41]. Noteworthy, these trials have mainly included 
somatic rather than germline mutations.

The prevalence of MMR P/LPGV in advanced PCa has 
been reported to be 0.5-1.7% [8, 42-45]. Thus, our 0.9% rate of 
MMR genes is consistent with the literature. However, the two 
patients with MMR aberrations in our cohort had alterations in 
MLH1 and PMS2 genes, in contrast to the MSH2 and MSH6 P/
LPGV most commonly reported in other PCa studies [42-44]. 
Current evidence shows a two to threefold higher frequency 
of MMR mutations in metastatic PCa compared to localized 
disease [45]. Aside from the advanced disease stage, there is a 
higher likelihood of identifying MMR P/LPGV in patients with 
Gleason score ≥ 8 and ductal histologic variants [46, 47]. Up to 
12% of patients with metastatic PCa are found to have somatic 
MMR gene mutations and/or microsatellite instability (MSI)-
high status [45]. Identification of a P/LPGV in an MMR gene 
is often an indication that the tumor may be MMR-deficient, 
and the patient may therefore be eligible for treatment with the 
FDA-approved immune checkpoint inhibitor pembrolizumab 
[48, 49].

In our study, we found that all identified P/LPGVs, most 
of which were in the DDR pathway, were actionable based on 
published management guidelines, or potential eligibility for 
clinical trials and/or targeted therapies. This suggests that pa-
tients carrying these genes may potentially benefit from novel 
drugs. These variants may also play a crucial role in deter-
mining disease prognosis and personalized management plans. 
Moreover, the detection of these P/LPGVs enables cancer 
screening and prevention of the patients and their families.

We conducted prospective GGT of 231 men. However, it 
is worth noting that the majority of men with PCa in our region 
are not offered GGT, even when they meet the recommenda-
tions set by major professional societies. This disparity can be 
attributed to many factors such as a lack of genetic counse-
lors, insufficient knowledge among treating physicians, and 
a lack of insurance coverage. It is important to acknowledge 
that these barriers are not limited to our region alone. A survey 
conducted by the Prostate Cancer Clinical Trial Consortium 
revealed that less than 40% of treating physicians in academic 
centers refer eligible candidates for GGT, and only 12% of 
individuals with high-risk localized disease were considered 
for testing [50]. In our study, we encountered a refusal rate of 
13% among patients, and interestingly, the main reasons for 
this were disbelief in the value of GGT, and concern about the 
social and psychological impact of receiving positive results. 
These findings warrant further investigation and targeted in-
terventions.

Finally, we acknowledge some limitations relevant to our 
study. First, our study did not include disease and treatment 
outcomes, which could have provided valuable insights into 
the correlation between GGT and patients’ prognosis. Second, 
although our cohort included a significant number of patients 
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relative to disease prevalence in our region, it is still a small 
cohort compared to other studies in the literature. Third, we 
failed to identify a significant correlation between many pa-
tient and disease characteristics and the likelihood of increased 
detection of P/LPGV, which could require a larger sample size. 
Nevertheless, this study contributes valuable information to 
the literature regarding the germline genetic profile of Arab 
patients with PCa.

Conclusions

Our study represents the first report of GGT conducted in an 
Arab population with PCa. Among patients tested, 7.4% ex-
hibited P/LPGV, mostly involving DDR genes. We observed 
that a panel of 19 prostate-specific genes was effective in iden-
tifying the majority of P/LPGV. More studies are needed to 
correlate these GGT results with clinical outcomes in our PCa 
patient population.
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