Targeting RhoC by Way of Ribozyme Trangene in Human Breast Cancer Cells and its Impact on Cancer Invasion

Jane Lane, Tracey A Martin, Wen G Jiang


Background: Cell motility and migration are known to be regulated by the Rho family of GTPases through their effects on the actin cytoskeleton. In breast cancer studies, RhoC has been identified as a highly specific marker in detecting tumors that developed metastases. This study aims to investigate the impact of targeting RhoC in human breast cancer cells by utilising ribozyme transgene technology and to assess its effect on cancer cell invasion.

Retroviral hammerhead ribozyme transgenes, regulated by doxycycline, were designed to specifically target human RhoC mRNA. The breast cancer cell line MDA-MB-231 was transfected with either a retroviral RhoC transgene or a control retroviral transgene. Stably transfected cells were tested for their invasiveness and migratory properties in vitro.

Results: In vitro testing of the invasiveness of wild type, plasmid control and the RhoC knockdown cells showed that MDA-MB-231DRHOC cells had significantly reduced invasiveness compared with MDA-MB-231WT (p < 0.038 RHOC2 knockdown cells; p < 0.006 RHOC3 knockdown cells) and MDA-MB-231pRevTRE control plasmid cells (p < 0.07 RHOC2 knockdown cells; p < 0.002 RHOC3 knockdown cells). An even greater reduction in invasiveness of the MDA-MB-231DRHOC cells compared with the MDA-MB-231WT cells was seen in response to hepatocyte growth factor (HGF/SF) (p < 0.009 RHOC1 knockdown; p = 0.004 RHOC2 knockdown; p = 0.00007 RHOC3 knockdown). The addition of doxycycline significantly improved the effectiveness of the ribozyme transgenes (p < 0.04 for all three Rho ribozymes), but did not improve the effectiveness of these knockdown cells when treated with HGF/SF (p > 0.1 for all three ribozymes).

Conclusions: This data would indicate that targeting RhoC may be an effective way to reduce the invasive potential of human breast cancer cells.

World J Oncol. 2010;1(1):7-13


RhoC; Invasion; Ribozyme; Molecular targeting; Breast cancer

Full Text: HTML PDF

Browse  Journals  


Journal of Clinical Medicine Research

Journal of Endocrinology and Metabolism

Journal of Clinical Gynecology and Obstetrics


World Journal of Oncology

Gastroenterology Research

Journal of Hematology


Journal of Medical Cases

Journal of Current Surgery

Clinical Infection and Immunity


Cardiology Research

World Journal of Nephrology and Urology

Cellular and Molecular Medicine Research


Journal of Neurology Research

International Journal of Clinical Pediatrics



World Journal of Oncology, bimonthly, ISSN 1920-4531 (print), 1920-454X (online), published by Elmer Press Inc.                     
The content of this site is intended for health care professionals.
This is an open-access journal distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted
non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons Attribution license (Attribution-NonCommercial 4.0 International CC-BY-NC 4.0)

This journal follows the International Committee of Medical Journal Editors (ICMJE) recommendations for manuscripts submitted to biomedical journals,
the Committee on Publication Ethics (COPE) guidelines, and the Principles of Transparency and Best Practice in Scholarly Publishing.

website:   editorial contact:
Address: 9225 Leslie Street, Suite 201, Richmond Hill, Ontario, L4B 3H6, Canada

© Elmer Press Inc. All Rights Reserved.

Disclaimer: The views and opinions expressed in the published articles are those of the authors and do not necessarily reflect the views or opinions of the editors and Elmer Press Inc. This website is provided for medical research and informational purposes only and does not constitute any medical advice or professional services. The information provided in this journal should not be used for diagnosis and treatment, those seeking medical advice should always consult with a licensed physician.